时空数据发布中的隐式隐私保护
作者:
基金项目:

国家自然科学基金(61532010,61379050,91224008);国家高技术研究发展计划(863)(2013AA013204);高等学校博士学科点专项科研基金(20130004130001);中国人民大学科学研究基金(11XNL010)


Preservation of Implicit Privacy in Spatio-Temporal Data Publication
Author:
Fund Project:

National Natural Science Foundation of China (61532010, 61379050, 91224008); National High-Tech R&D Program of China (863) (2013AA013204); Research Fund for the Doctoral Program of Higher Education of China (20130004130001); Research Funds of Renmin University of China (11XNL010)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着大数据时代的到来,大量的用户位置信息被隐式地收集.虽然这些隐式收集到的时空数据在疾病传播、路线推荐等科学、社会领域中发挥了重要的作用,但它们与用户主动发布的时空数据相互参照引起了大数据时代时空数据发布中新的个人隐私泄露问题.现有的位置隐私保护机制由于没有考虑隐式收集的时空数据与用户主动发布的位置数据可以相互参照的事实,不能有效保护用户的隐私.首次定义并研究了隐式收集的时空数据中的隐私保护问题,提出了基于发现-消除的隐私保护框架.特别地,提出了基于前缀过滤的嵌套循环算法用于发现隐式收集的时空数据中可能泄露用户隐私的记录,并提出基于频繁移动对象的假数据添加方法消除这些记录.此外,还分别提出了更高效的反先验算法和基于图的假数据添加算法.最后,在若干真实数据集上对提出的算法进行了充分实验,证实了这些算法有较高的保护效果和性能.

    Abstract:

    In the emerging big data era, in addition to explicit publication of users' locations on geo-social networks, positioning system embedded in mobile phones implicitly records users' locations. Although such implicitly collected spatiotemporal data play an important role in a wide range of applications such as disease outbreak control and route recommendation for life science or smart city, they cause new serious privacy issues when cross-referencing with the explicitly published data from users. Existing location privacy preservation techniques fail to preserve the proposed implicit privacy because they ignore the cross-reference between implicitly and explicitly spatiotemporal data. To tackle this issue, this work for the first time investigates and defines the implicit privacy and proposes the discover and eliminate framework. In particular, this paper proposes prefix filtering based nest loop algorithm and frequent moving object based algorithm to generate dummy data to preserve the proposed implicit privacy. Further, it constructs an improved reverse a priori algorithm and graph based dummy data generation algorithm respectively to make the solution more practical. The results of extensive experiments on real world datasets demonstrate the effectiveness and efficiency of the proposed methods.

    参考文献
    [1] Nathan E, Alex P. Reality mining: Sensing complex social systems. Journal of Personal and Ubiquitous Computing, 2006,10(4): 255-268. [doi: 10.1007/s00779-005-0046-3]
    [2] Le MA, Tatem AJ, Cohen JM, Hay SI, Randell H, Patil AP, Smith DL. Travel risk, malaria importation and malaria transmission in Zanzibar. Scientific Reports, 2011,1(7364):271-275. [doi:10.1038/srep00093]
    [3] Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, Snow RW, Buckee CO. Quantifying the impact of human mobility on malaria. Science, 2012,338(6104):267-270. [doi: 10.1126/science.1223467]
    [4] Hill S, Banser A, Berhan G, Eagle N. Reality mining Africa. In: Proc. of the AAAI Spring Symp. on Artificial Intelligence for Development. 2010. http://www.seas.upenn.edu/~ngns/docs/References/Hill%202010%20realityminingafrica.pdf
    [5] Yuan J, Zheng Y, Xie X. Discovering regions of different functions in a city using human mobility and POIs. In: Yang Q, Agarwal D, Pei J, eds. Proc. of the KDD. New York: ACM Press, 2012. 186-194. [doi: 10.1145/2339530.2339561]
    [6] Zheng K, Shang S, Yuan J, Yang Y. Towards efficient search for activity trajectories. In: Jensen CS, Jermaine CM, Zhou XF, eds. Proc. of the ICDE. Washington: IEEE Computer Society, 2013. 230-241. [doi: 10.1109/ICDE.2013.6544828]
    [7] Yuan NJ, Zheng Y, Zhang L, Xie X. T-Finder: A recommender system for finding passengers and vacant taxis. IEEE Trans. on Knowledge & Data Engineering, 2013,25(10):2390-2403. [doi: 10.1109/TKDE.2012.153]
    [8] Wicker SB. The loss of location privacy in the cellular age. Communications of the ACM, 2012,55(8):60-68. [doi: 10.1145/22402 36.2240255]
    [9] Wang L, Meng XF, Information SO. Location privacy preservation in big data era: A survey. Ruan Jian Xue Bao/Journal of Software, 2014,25(4):693-712 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4551.htm [doi: 10.13328/j.cnki. jos.004551]
    [10] Montjoye YAD, Hidalgo CA, Verleysen M, Blondel VD. Unique in the Crowd: The privacy bounds of human mobility. Open Access Publications from Université Catholique De Louvain, 2013,3(6):776-776.
    [11] Bu GG, Liu L. A customizable k-anonymity model for protecting location privacy. In: Proc. of the Icdcs. 2004. 620-629.
    [12] Cicek AE, Nergiz ME, Saygin Y. Ensuring location diversity in privacy-preserving spatio-temporal data publishing. VLDB Endowment, 2014,23(4):609-625. [doi: 10.1007/s00778-013-0342-x]
    [13] Fung BCM, Wang K, Chen R, Yu PS. Privacy-Preserving data publishing: A survey of recent developments. ACM Computing Surveys, 2010,42(4):2623-2627. [doi: 10.1145/1749603.1749605]
    [14] Sweeney L. K-Anonymity: A model for protecting privacy. Int'l Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2008,10(5):557-570. [doi: 10.1142/S0218488502001648]
    [15] Mokbel MF, Chow CY, Aref WG. The new casper: Query processing for location services without compromising privacy. In: Dayal U, Whang KY, et al., eds. Proc. of the VLDB. New York: ACM Press, 2009. 763-774.
    [16] Pan X, Xu J, Meng X. Protecting location privacy against location-dependent attack in mobile services. IEEE Trans. on Knowledge & Data Engineering, 2011,24(8):1506-1519. [doi: 10.1109/TKDE.2011.105]
    [17] Abul O, Bonchi F, Nanni M. Never walk alone: Uncertainty for anonymity in moving objects databases. In: Alonso G, Blakeley J, Chen ALP, eds. Proc. of the ICDE. Washington: IEEE Computer Society, 2008. 376-385. [doi: 10.1109/ICDE.2008.4497446]
    [18] Huo Z, Meng X, Hu H, Huang Y. You can walk alone: Trajectory privacy-preserving through significant stays protection. In: Lee SG, Peng ZY, et al., eds. Proc. of the DASFAA. Berlin: Springer-Verlag, 2012. 351-366. [doi: 10.1007/978-3-642-29038-1_26]
    [19] Poulis G, Skiadopoulos S, Loukides G, Gkoulalas-Divanis A. Apriori-Based algorithms for km-anonymizing trajectory data. Trans. on Data Privacy, 2014,7(2):165-194.
    [20] Domingo-Ferrer J, Trujillo-Rasua R. Microaggregation- and permutation-based anonymization of movement data. Information Sciences, 2012,208(21):55-80. [doi: 10.1016/j.ins.2012.04.015]
    [21] Hu H, Xu J, On ST, Ng JKY. Privacy-Aware location data publishing. ACM Trans. on Database Systems, 2010,35(3):53-56. [doi: 10. 1145/1806907.1806910]
    [22] Dwork C. Differential privacy. In: Bugliesi M, Preneel B, et al., eds. Proc. of the ICALP. Berlin: Springer-Verlag, 2006. 1-12. [doi: 10.1007/11787006_1]
    [23] Hay M, Rastogi V, Miklau G, Suciu D. Boosting the accuracy of differentially private histograms through consistency. VLDB Endowment, 2009,3(1):66-69. [doi: 10.14778/1920841.1920970]
    [24] Rekatsinas T, Deshpande A, Machanavajjhala A. SPARSI: Partitioning sensitive data amongst multiple adversaries. VLDB Endowment, 2013,6(13):1594-1605. [doi: 10.14778/2536258.2536270]
    [25] Knuth D. The art of computer programming. Vol.4, Fascicle 2: Generating all Tuples & Permutations. Addison-Wesley Professional, 2008.
    [26] Metwally A, Agrawal D, El Abbadi A. Efficient computation of frequent and top-k elements in data streams. In: Eiter T, Libkin L, eds. Proc. of the ICDT 2005. Berlin: Springer-Verlag, 2005. 398-412. [doi: 10.1007/978-3-540-30570-5_27]
    [27] Geo H, Tang J, Liu H. Addressing the cold-start problem in location recommendation using geo-social correlations. Data Mining & Knowledge Discovery, 2015,29(2):299-323. [doi: 10.1007/s10618-014-0343-4]
    [28] Zheng Y, Xie X, Ma WY. GeoLife: A collaborative social networking service among user, location and trajectory. Bulletin of the Technical Committee on Data Engineering, 2010,33(2):32-39.
    附中文参考文献:
    [9] 王璐,孟小峰.位置大数据隐私保护研究综述.软件学报,2014,25(4):693-712. http://www.jos.org.cn/1000-9825/4551.htm [doi: 10. 13328/j.cnki.jos.004551]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王璐,孟小峰,郭胜娜.时空数据发布中的隐式隐私保护.软件学报,2016,27(8):1922-1933

复制
分享
文章指标
  • 点击次数:6165
  • 下载次数: 8650
  • HTML阅读次数: 3518
  • 引用次数: 0
历史
  • 收稿日期:2015-12-19
  • 最后修改日期:2016-06-02
  • 在线发布日期: 2016-08-08
文章二维码
您是第20375379位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号