基于二进制GA的B样条重构曲线节点优化
作者:
基金项目:

国家自然科学基金(61572430,61272309,61472366)


Binary GA for Knot Optimization of B-Spline Curve Reconstruction
Author:
Fund Project:

National Natural Science Foundation of China (61572430, 61272309, 61472366)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    带法向约束的自由曲线曲面重构在光学反射面设计中起着至关重要的作用.为解决法向约束下的曲线重构问题提出了一种优化方案,使得重构出的曲线在逼近数据点的同时,亦能满足相应法向约束.首先,利用惩罚函数的方法将带法向约束的优化问题转化为无约束的优化问题.然后,引入二进制编码的遗传算法(GA),建立合适的适应度函数,自适应产生优化节点向量,如此迭代进化,直到产生令人满意的重构曲线为止.考虑到节点向量非递减的特性,而遗传算法在寻找最优节点向量的过程中有可能打乱节点向量的顺序,所以在建立适应度函数的时候将变量调整为无序有界变量.通过与传统最小二乘方法和粒子群智能优化方法的比较,所提方案在解决带法向条件约束的曲线重构问题上优势明显,且对于任意形状的曲线重构都行之有效.

    Abstract:

    Freedom curve/surface reconstruction with normal constraints is crucial in optical reflecting surface design. In this paper a binary code based genetic algorithm for knot optimization scheme is proposed to reconstruct a B-spline curve that not only approximates the data points but also meets the corresponding normal constraints. First, the constrained optimization problem is transformed into an unconstrained optimization problem by means of penalty function method. Then, the binary code based genetic algorithm (GA) is applied to find the best knot vector after establishing a suitable fitness function. Finally, adaptive generation of optimal knot vector and iterative evolution result in a satisfactory reconstructed curve. Since knot vector is non decreasing,and genetic algorithm may disrupt the order of knot vector in searching for the optimal knot vector, a process is also built to adjust variables into disordered bounded variables in the fitness function. Test results and a comparison with the traditional least square method as well as modern particle swarm optimization method show that the proposed scheme for reconstructing B-spline curve with normal constraints is superior and effective on arbitrary shape of discrete data set.

    参考文献
    [1] Várady T,Martin RR,Cox J.Reverse engineering of geometric models-An introduction.Computer-Aided Design,1997,29(4):255-268.[doi:10.1016/S0010-4485(96)00054-1]
    [2] Piegl L,Tiller W.The NURBS Book.New York:Springer-Verlag,1997.[doi:10.1007/978-3-642-59223-2]
    [3] Gofuku S,Tamura S,Maekawa T.Point-Tangent/Point-Normal B-spline curve interpolation by geometric algorithms.Computer-Aided Design,2009,41(6):412-422.[doi:10.1016/j.cad.2009.02.005]
    [4] Abbas A,Nasri A,Maekawa T.Generating B-spline curves with points,normals and curvature constraints:A constructive approach.The Visual Computer,2010,26(6):823-829.[doi:10.1007/s00371-010-0441-2]
    [5] Shoichi O,Ahmad N,Lin HW,Abdulwahed A,Yuki K,Takashi M.Uniform B-spline curve interpolation with prescribed tangent and curvature vectors.IEEE Trans.on Visualization and Computer Graphics,2012,18(9):1474-1487.[doi:10.1109/TPDS.2011.262]
    [6] Xing RS,Pan RJ.PIA for uniform cubic B-spline curve interpolation with prescribed tangent vector.Journal of Fujian Normal University:Nature Science Edition,2014,30(1):25-32(in Chinese with English abstract).
    [7] Hu QL,Shou HH.Uniform cubic B-spline curve interpolation with normal constraint.Journal of Zhejiang University (SCIENCE EDITION),2014,41(6):619-623(in Chinese with English abstract).[doi:10.3785/j.issn.1008-9497.2014.06.002]
    [8] Yoshimoto F,Harada T,Yoshimoto Y.Data fitting with a spline using a real-coded genetic algorithm.Computer-Aided Design,2003,35(8):751-760.[doi:10.1016/S0010-4485(03)00006-X]
    [9] Adi DI,Shamsuddin SM,Ali A.Particle swarm optimization for NURBS curve fitting.In:Proc.of the 6th Int'l Conf.on Computer Graphics,Imaging and Visualization (CGIV 2009).Washington:IEEE Computer Society Press,2009.259-263.[doi:10.1109/CGIV.2009.64]
    [10] Gálvez A,Iglesias A.Efficient particle swarm optimization approach for data fitting with free knot B-splines.Computer-Aided Design,2011,43(12):1683-1692.[doi:10.1016/j.cad.2011.07.010]
    [11] Kang HM,Chen FL,Li YS,Deng JS,Yang ZW.Knot calculation for spline fitting via sparse optimization.Computer-Aided Design,2014,58(8):179-188.[doi:10.1016/j.cad.2014.08.022]
    [12] Lee ETY.Choosing nodes in parametric curve interpolation.Computer-Aided Design,1989,21(6):363-370.[doi:10.1016/0010-4485(89)90003-1]
    [6] 星蓉生,潘日晶.三次均匀B样条曲线插值数据点及其切矢的PIA算法.福建师范大学学报:自然科学版,2014,30(1):25-32.
    [7] 胡巧莉,寿华好.带法向约束的3次均匀B样条曲线插值.浙江大学学报(理学版),2014,41(6):619-623.[doi:10.3785/j.issn.1008-9497.2014.06.002]
    相似文献
    引证文献
引用本文

胡良臣,寿华好.基于二进制GA的B样条重构曲线节点优化.软件学报,2016,27(10):2488-2498

复制
分享
文章指标
  • 点击次数:4073
  • 下载次数: 6692
  • HTML阅读次数: 3120
  • 引用次数: 0
历史
  • 收稿日期:2016-01-16
  • 最后修改日期:2016-03-25
  • 在线发布日期: 2016-08-11
文章二维码
您是第19727541位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号