融合网络环境下快速可靠的服务组合容错方法
作者:
基金项目:

国家自然科学基金(61472047,61571066)


Fast and Reliable Fault-Tolerance Approach for Service Composition in Integration Networks
Author:
Fund Project:

National Natural Science Foundation of China (61472047, 61571066)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对传统容错方法在融合网络环境下服务组合的低效性,提出了一种快速可靠的服务组合容错方法.该方法首先采用模糊逻辑对服务的临时性故障进行服务重试;然后采用多属性决策理论对服务的永久性故障进行服务复制;最后,通过改进的粒子群算法对永久性故障进行服务补偿.基于真实数据集的实验结果表明,所提方法在故障排除率、故障处理时间与组合最优度方面均优于其他方法.

    Abstract:

    Traditional fault-tolerance approaches often result in low efficiency of service composition in integration networks. In this paper, a fast and reliable fault-tolerance approach is proposed for service composition in integration networks. This approach firstly adopts fuzzy logic to perform service retry when the transient faults of service occur. And then multi-attribute decision-making theory is employed to carry out service replicate when the permanent faults of service occur. Finally, an improved particle swarm optimization algorithm is used to implement service compensation when the permanent faults of service arise. The experimental results based on real data sets show that the proposed approach is superior to other approaches in terms of fault handling rate, fault handling time, and composition optimization.

    参考文献
    [1] Zheng ZB, Zhang Y, Lyu MR. Distributed QoS evaluation for real-world Web services. In:Proc. of the 17th Int'l Conf. on Web Services (ICWS 2010). Miami:IEEE, 2010. 83-90.[doi:10.1109/ICWS.2010.10]
    [2] Hamadi R, Benatallah B. A Petri net-based model for Web service composition. In:Proc. of the 14th Australasian Database Conf. (ADC 2003), Vol.17. Darlinghurst:Australian Computer Society, 2003. 191-200. http://dl.acm.org/citation.cfm?id=820121
    [3] Bultan T, Fu X, Hull R. Conversation specification:A new approach to design and analysis of e-service composition. In:Proc. of the 12th Int'l Conf. on World Wide Web (WWW 2003). New York:ACM Press, 2003. 403-410.[doi:10.1145/775152.775210]
    [4] Lucchi R, Mazzara M. A pi-calculus based semantics for WS-BPEL. The Journal of Logic and Algebraic Programming, 2007,70(1):96-118.[doi:10.1016/j.jlap.2006.05.007]
    [5] Zheng ZB, Lyu MR. Selecting an optimal fault tolerance strategy for reliable service-oriented systems with local and global constraints. IEEE Trans. on Computers, 2015,64(1):219-232.[doi:10.1109/TC.2013.189]
    [6] Yu WD. A software fault prevention approach in coding and root cause analysis. Bell Labs Technical Journal, 1998,3(2):3-21.[doi:10.1002/bltj.2101]
    [7] Littlewood B. Stochastic reliability-growth:A model for fault-removal in computer-programs and hardware-designs. IEEE Trans. on Reliability, 1981,30(4):313-320.[doi:10.1109/TR.1981.5221099]
    [8] Randell B. System structure for software fault tolerance. In:Proc. of the Int'l Conf. on Reliable Software. New York:ACM Press, 1975. 437-449.[doi:10.1145/800027.808467]
    [9] Vergura S, Acciani G, Amoruso V. Inferential statistics for monitoring and fault forecasting of PV plants. In:Proc. of the IEEE Int'l Symp. on Industrial Electronics (ISIE 2008). Cambridge:IEEE, 2008. 2414-2419.[doi:10.1109/ISIE.2008.4677264]
    [10] Mansour HE, Dillon T. Dependability and rollback recovery for composite Web services. IEEE Trans. on Services Computing, 2011,4(4):328-339.[doi:10.1109/TSC.2010.16]
    [11] Zheng ZB, Lyu MR. A QoS-aware fault tolerant middleware for dependable service composition. In:Proc. of the 39th Int'l Conf. on the Dependable Systems & Networks (DSN 2009). Lisbon:IEEE, 2009. 239-248.[doi:10.1109/DSN.2009.5270332]
    [12] Zheng ZB, Lyu MR. A distributed replication strategy evaluation and selection framework for fault tolerant Web services. In:Proc. of the 15th Int'l Conf. on Web Services (ICWS 2008). Beijing:IEEE, 2008. 145-152.[doi:10.1109/ICWS.2008.42]
    [13] Tan TH, Chen M, André É, Sun J, Liu Y, Dong JS. Automated runtime recovery for QoS-based service composition. In:Proc. of the 23rd Int'l Conf. on World Wide Web (WWW 2014). New York:ACM Press, 2014. 563-574.[doi:10.1145/2566486.2568048]
    [14] Salas J, Perez-Sorrosal F, Patiño-Martínez M, Jiménez-Peris R. WS-Replication:A framework for highly available Web services. In:Proc. of the 15th Int'l Conf. on World Wide Web (WWW 2006). New York:ACM Press, 2006. 357-366.[doi:10.1145/1135777.1135831]
    [15] Liu A, Li Q, Huang L, Xiao M. Facts:A framework for fault-tolerant composition of transactional Web services. IEEE Trans. on Services Computing, 2010,3(1):46-59.[doi:10.1109/TSC.2009.28]
    [16] Gülcü K, Sözer H, Aktemur B, Ercan AÖ. Fault masking as a service. Software:Practice and Experience, 2014,44(7):835-854.[doi:10.1002/spe.2255]
    [17] Fan XQ, Jiang CJ, Wang JL, Pang SC. Random-QoS-Aware reliable Web service composition. Ruan Jian Xue Bao/Journal of Software, 2009,20(3):546-556(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3339.htm[doi:10.3724/SP.J. 1001.2009.03339]
    [18] Wu GQ, Wei J, Huang T. A dynamic QoS assessment approach for internetware with uncertainty reasoning. Ruan Jian Xue Bao/Journal of Software, 2008,19(5):1173-1185(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/20080509.htm[doi:10.3724/SP.J.1001.2008.01173]
    [19] Liu XZ, Huang G, Mei H. Consumer-Centric service aggregation:Method and its supporting framework. Ruan Jian Xue Bao/Journal of Software, 2007,18(8):1883-1895(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/20070804.htm[doi:10.1360/jos181883]
    [20] Wang SG, Sun QB, Zou H, Yang FC. Particle swarm optimization with skyline operator for fast cloud-based Web service composition. Mobile Networks and Applications, 2013,18(1):116-121.[doi:10.1007/s11036-012-0373-3]
    [21] Wang SG, Zheng ZB, Sun QB, Zou H, Yang FC. Cloud model for service selection. In:Proc. of the Conf. on Computer Communications Workshops (INFOCOM WORKSHOPS 2011). Shanghai:IEEE, 2011. 666-671.[doi:10.1109/INFCOMW.2011. 5928896]
    [22] Ma Y, Wang SG, Sun QB, Yang FC. Web service quality metric algorithm employing objective and subjective weight. Ruan Jian Xue Bao/Journal of Software, 2014,25(11):2473-2485(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4508. htm[doi:10.13328/j.cnki.jos.004508]
    [23] Tao F, Zhao D, Hu Y, Zhou Z. Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system. IEEE Trans. on Industrial Informatics, 2008,4(4):315-327.[doi:10.1109/TII.2008.2009533]
    [24] Wang LX. Adaptive Fuzzy Systems and Control:Design and Stability Analysis. Upper Saddle River:Prentice-Hall, 1994.
    [25] Lee CC. Fuzzy logic in control systems:Fuzzy logic controller. Part II. IEEE Trans. on Systems, Man and Cybernetics, 1990, 20(2):419-435.[doi:10.1109/21.52552]
    [26] Yu H, Liu Z, Li YJ. Key nodes in complex networks identified by multi-attribute decision-making method. Acta Physica Sinica, 2013,62(2):20204-020204(in Chinese with English abstract).[doi:10.7498/aps.62.020204]
    [27] Saaty TL. Decision making with the analytic hierarchy process. Int'l Journal of Services Sciences, 2008,1(1):83-98.[doi:10.1504/IJSSci.2008.01759]
    [28] Wang SG, Sun QB, Yang FC. Web service dynamic selection by the decomposition of global QoS constraints. Ruan Jian Xue Bao/Journal of Software, 2011,22(7):1426-1439(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3842.htm[doi:10.3724/SP.J.1001.2011.03842]
    [29] Alrifai M, Risse T. Combining global optimization with local selection for efficient QoS-aware service composition. In:Proc. of the 18th Int'l Conf. on World Wide Web (WWW 2009). New York:ACM Press, 2009. 881-890.[doi:10.1145/1526709.1526828]
    [30] Zeng L, Benatallah B, Ngu AH, Dumas M, Kalagnanam J, Chang H. Qos-Aware middleware for Web services composition. IEEE Trans. on Software Engineering, 2004,30(5):311-327.[doi:10.1109/TSE.2004.11]
    [31] Zeng L, Benatallah B, Dumas M, Kalagnanam J, Sheng QZ. Quality driven Web services composition. In:Proc. of the 12th Int'l Conf. on World Wide Web (WWW 2003). New York:ACM Press, 2003. 411-421.[doi:10.1145/775152.775211]
    [32] Shi Y, Eberhart R. A modified particle swarm optimizer. In:Proc. of the Int'l Conf. on Evolutionary Computation (CEC'98). Anchorage:IEEE, 1998. 69-73.[doi:10.1109/ICEC.1998.699146]
    [33] Van Den Bergh. An analysis of particle swarm optimizers[Ph.D. Thesis]. Pretoria:University of Pretoria, 2006.
    [34] Al-Masri E, Mahmoud QH. Investigating Web services on the World Wide Web. In:Proc. of the 17th Int'l Conf. on World Wide Web (WWW 2008). New York:ACM Press, 2008. 795-804.[doi:10.1145/1367497.1367605]
    [35] Zhang YL, Zheng ZB, Lyu MR. Exploring latent features for memory-based QoS prediction in cloud computing. In:Proc. of the 30th IEEE Symp. on Reliable Distributed Systems (SRDS 2011). Madrid:IEEE, 2011. 1-10.[doi:10.1109/SRDS.2011.10]
    [36] Liu A, Li Q, Huang L. Quality driven Web services replication using directed acyclic graph coding. In:Proc. of the 12th Int'l Conf. on Web Information System Engineering (WISE 2011). Berlin:Springer-Verlag, 2011. 322-329.[doi:10.1007/978-3-642-24434-6_28]
    附中文参考文献:
    [17] 范小芹,蒋昌俊,王俊丽,庞善臣.随机QoS感知的可靠Web服务组合.软件学报,2009,20(3):546-556. http://www.jos.org.cn/1000-9825/3339.htm[doi:10.3724/SP.J.1001.2009.03339]
    [18] 吴国全,魏峻,黄涛.基于非确定性推理的网构软件服务质量动态评估方法.软件学报,2008,19(5):1173-1185. http://www.jos.org. cn/1000-9825/20080509.htm[doi:10.3724/SP.J.1001.2008.01173]
    [19] 刘譞哲,黄罡,梅宏.用户驱动的服务聚合方法及其支撑框架.软件学报,2007,18(8):1883-1895. http://www.jos.org.cn/1000-9825/20070804.htm[doi:10.1360/jos181883]
    [22] 马友,王尚广,孙其博,杨放春.一种综合考虑主客观权重的Web服务QoS度量算法.软件学报,2014,25(11):2473-2485. http://www.jos.org.cn/1000-9825/4508.htm[doi:10.13328/j.cnki.jos.004508]
    [26] 于会,刘尊,李勇军.基于多属性决策的复杂网络节点重要性综合评价方法.物理学报,2013,62(2):20204-020204.[doi:10.7498/aps.62.020204]
    [28] 王尚广,孙其博,杨放春.基于全局QoS约束分解的Web服务动态选择.软件学报,2011,22(7):1426-1439. http://www.jos.org.cn/1000-9825/3842.htm[doi:10.3724/SP.J.1001.2011.03842]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张俊娜,王尚广,孙其博,杨放春.融合网络环境下快速可靠的服务组合容错方法.软件学报,2017,28(4):940-958

复制
分享
文章指标
  • 点击次数:3661
  • 下载次数: 4886
  • HTML阅读次数: 1766
  • 引用次数: 0
历史
  • 收稿日期:2015-09-01
  • 最后修改日期:2015-11-18
  • 在线发布日期: 2016-03-30
文章二维码
您是第19780983位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号