面向海量低质手机轨迹数据的重要位置发现
作者:
基金项目:

国家重点基础研究发展计划(973)(2012CB316203);国家自然科学基金(61370101,U1501252,61532021);上海市教委科研创新重点项目(14ZZ045)


Discovering Important Locations From Massive and Low-Quality Cell Phone Trajectory Data
Author:
Fund Project:

National Basic Research Program of China (973) (2012CB316203); National Natural Science Foundation of China (61370101, U1501252, 61532021); Innovation Program of Shanghai Municipal Education Commission (14ZZ045)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    重要位置是指人们在日常生活中的主要活动地点,比如居住地和工作地.智能手机的不断发展与普及为人们的日常生活带来了极大的便利.除了通话、上网等传统应用之外,手机连接基站自动生成的日志记录也是用于用户行为模式挖掘的重要数据来源,例如重要位置发现.然而,相关工作面临着诸多挑战,包括轨迹数据规模庞大、位置精度低以及手机用户的多样性.为此,提出了一个通用解决框架以提高轨迹数据可用性.该框架包含一个基于状态的过滤模块,提高了数据的可用性,以及一个重要位置挖掘模块.基于此框架设计了两种分布式挖掘算法:GPMA(grid-based parallel mining algorithm)和SPMA(station-based parallel mining algorithm).进一步地,为提高挖掘结果的准确性和精确度,从3个方面进行优化:(1)使用多元数据的融合技术,提高结果的准确性;(2)提出了无工作地人群的发现算法;(3)提出了夜间工作人群的发现算法.理论分析和实验结果表明,所提算法具有较高的执行效率和可扩展性,并具有更高的精度.

    Abstract:

    Important locations mainly refer to the places where people spend much time in the daily life, including their home and working places. The development and popularization of smart cell phones bring great convenience to people's daily life. Besides making calls and surfing the Internet, the logs generated when visiting the base stations also contribute to users' pattern mining, such as important location discovery. However, it's challenging to deal with such kind of trajectory data, due to huge volume, data inaccuracy and diversity of cell phone users. In this research, a general framework is proposed to improve the usability of trajectory data. The framework includes a filter to improve data usability and a model to produce the mining results. Two concrete strategies, namely GPMA (grid-based parallel mining algorithm) and SPMA (station-based parallel mining algorithm), can be embedded into this framework separately. Moreover, three optimization techniques are developed for better performance:(1) a data fusion method, (2) an algorithm to find users who have no work places, and (3) an algorithm to find people who work at night and fix their important locations. Theoretical analysis and extensive experimental results on real datasets show that the proposed algorithms are efficient, scalable, and effective.

    参考文献
    [1] Gonzalez MC, Hidalgo CA, Barabasi AL. Understanding individual human mobility patterns. Nature, 2008,453(7196):779-782.[doi:10.1038/nature06958]
    [2] Song C, Qu Z, Blumm N, Barabasi AL. Limits of predictability in human mobility. Science, 2010,327(5968):1018-1021.[doi:10.1126/science.1177170]
    [3] Song C, Koren T, Wang P, Barabasi AL. Modelling the scaling properties of human mobility. Nature Physics, 2010,6(10):818-823.[doi:10.1038/nphys1760]
    [4] Li Z, Ding B, Han J, Roland K, Peter N. Mining periodic behaviors for moving objects. In:Proc. of the 16th Int'l Conf. on Knowledge Discovery and Data Mining (SIGKDD 2010). New York:ACM Press, 2010.1099-1108.[doi:10.1145/1835804.1835942]
    [5] Ashbrook D, Starner T. Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing, 2003,7(5):275-286.[doi:10.1007/s00779-003-0240-0]
    [6] Sadilek A, Kautz H, Bigham JP. Finding your friends and following them to where you are. In:Proc. of the 5th ACM Int'l Conf. on Web Search and Data Mining. New York:ACM Press, 2012.723-732.[doi:10.1145/2124295.2124380]
    [7] Cho E, Myers SA, Leskovec J. Friendship and mobility:User movement in location-based social networks. In:Proc. of the 17th Int'l Conf. on Knowledge Discovery and Data Mining (SIGKDD 2011). New York:ACM Press, 2011.1082-1090.[doi:10.1145/2020408.2020579]
    [8] Bao J, Zheng Y, Mokbel MF. Location-Based and preference-aware recommendation using sparse geo-social networking data. In:Proc. of the 20th Int'l Conf. on Advances in Geographic Information Systems (SIGSPATIAL 2012). New York:ACM Press, 2012.199-208.[doi:10.1145/2424321.2424348]
    [9] Yuan NJ, Wang Y, Zhang F, Xie X. Reconstructing individual mobility from smart card transactions:A space alignment approach. In:Proc. of the 13th Int'l Conf. on Data Mining (ICDM 2013). IEEE, 2013.877-886.[doi:10.1109/ICDM.2013.37]
    [10] Wu WQ. 本市人均拥有手机1.4部.2014. http://www.jfdaily.com/shanghai/bw/201406/t20140625_481869.html
    [11] Isaacman S, Becker R, Cáceres R, Kobourov S, Martonosi M, Rowland J, Varshavsky A. Identifying important places in people's lives from cellular network data. In:Pervasive Computing. Berlin, Heidelberg:Springer-Verlag, 2011.133-151.[doi:10.1007/978-3-642-21726-5_9]
    [12] Li JZ, Liu XM. An important aspect of big data:Data usability. Journal of Computer Research and Development, 2013, 50(6):1147-1162(in Chinese with English abstract).
    [13] Cheng R, Chen J, Xie X. Cleaning uncertain data with quality guarantees. In:Proc. of the Very Large Data Bases Endowment (VLDB 2008). 2008,1(1):722-735.[doi:10.14778/1453856.1453935]
    [14] Scellato S, Noulas A, Lambiotte R, Mascolo C. Socio-Spatial properties of online location-based socialnetworks. In:Proc. of the 5th Int'l Conf. on Weblogs and Social Media. Palo Alto:AAAI Press, 2011,11:329-336. http://www.icwsm.org/2011/index.php
    [15] Chen J, Hu B, Zuo X, Yue Y. Personal profile mining based on mobile phone location data. Geomatics and Information Science of Wuhan University, 2014,39(6):734-738.
    [16] Dean J, Ghemawat S. MapReduce:Simplified data processing on large clusters. Communications of the ACM, 2008,51(1):107-113.[doi:10.1145/1327452.1327492]
    [17] Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad U, eds. Proc. of the 2nd Int'l Conf. on Knowledge Discovery and Data Mining (SIGKDD 1996). Palo Alto:AAAI Press, 1996,96:226-231. http://www.aaai.org/Press/Proceedings/kdd96.php
    附中文参考文献:
    [10] 吴卫群.本市人均拥有手机1.4部.2014. http://www.jfdaily.com/shanghai/bw/201406/t20140625_481869.html
    [12] 李建中,刘显敏.大数据的一个重要方面:数据可用性.计算机研究与发展,2013,50(6):1147-1162.
    [15] 陈佳,胡波,左小清,乐阳.利用手机定位数据的用户特征挖掘.武汉大学学报·信息科学版,2014,39(6):734-738.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

章志刚,金澈清,王晓玲,周傲英.面向海量低质手机轨迹数据的重要位置发现.软件学报,2016,27(7):1700-1714

复制
分享
文章指标
  • 点击次数:5846
  • 下载次数: 8780
  • HTML阅读次数: 3184
  • 引用次数: 0
历史
  • 收稿日期:2015-09-25
  • 最后修改日期:2016-01-12
  • 在线发布日期: 2016-03-24
文章二维码
您是第19727483位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号