基于相似查询树的快速密文检索方法
作者:
基金项目:

广东电网有限责任公司信息中心大数据环境下的数据安全研究项目(K-GD2014-1019);中国科学院战略性先导科技专项(XDA06040601);新疆维吾尔自治区科技专项(201230121)


Efficient Ciphertext Search Method Based on Similarity Search Tree
Author:
Fund Project:

Information Center of Guangdong Power Grid Corporation’s Project of Study on Data Security in Big Data Environments (K-GD2014-1019); Strategic Priority Research Program of Chinese Academy of Sciences (XDA06040601); Xinjiang Uygur Autonomous Region Science and Technology Plan (201230121)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    随着云计算的广泛应用,数据中心的数据量急速增加;同时,用户文档通常包含隐私敏感信息,需要先加密然后上传到云服务器.面对如此大量的密文数据,现有技术在大数据量的密文数据上的检索效率很低.针对这一问题,提出在大数据下的基于相似查询树的密文检索方法(MRSE-SS).该方法通过设置聚类中心和成员之间的最大距离对文档向量进行聚类,并把中心向量看成n维超球体的球心,最大距离作为半径,再逐步将小聚类聚合成大聚类.使用该方法构建的密文文档集合,在查询阶段,仅需检索查询向量相邻的聚类即可获得理想的查询结果集合,从而提高了密文检索的效率.以《软件学报》最近10年的论文作为样本进行了实验,数据集中选取2 900篇文档和4 800个关键词.实验结果显示:当文档集个数呈指数增长时,检索时间仅呈线性增长,并且检索结果的关联性比传统检索方法更强.

    Abstract:

    With extensive applications of cloud computing, data capacity of data centers has grown rapidly. Furthermore, document information, which usually contains user's sensitive information, needs to be encrypted before being outsourced to data centers. Faced with such a large amount of ciphertext data, current techniques have low search efficiency in this scenario. Aiming at solving this problem, this paper proposes an efficient ciphertext search method based on similarity search tree (MRSE-SS) that can handle big data volume. The proposed approach clusters the documents based on the max distance between the cluster center and its members, constructs an n-dimensional hyper sphere by using the cluster center as the center of sphere and the max distance as radius, and then gradually clusters small clusters into large clusters. In the search phase of the ciphertext document collection constructed by this method, the ideal retrieval results can be obtained only by searching the query vector's neighboring clusters, thus improving the efficiency of ciphertext search. An experiment is conducted using the collection set built from the recent ten years' JC publications, containing about 2900 documents with nearly 4800 keywords. The results show that the presented approach can reach a linear computational complexity against exponential size of document collection. In addition, the retrieved documents have a better relationship with each other than by traditional methods.

    参考文献
    [1] Song DX, Wagner D, Perrig A. Practical techniques for searches on encrypted data. In: Titsworth FM, ed. Proc. of the 2000 IEEE Symp. on Security and Privacy. Los Alamitos: IEEE Computer Society, 2000. 44-55. [doi: 10.1109/SECPRI.2000.848445]
    [2] Goh EJ. Secure Indexes. Vol.216: IACR Cryptology ePrint Archive, 2004. 1-19.
    [3] Wang C, Cao N, Li J, Ren K, Lou W. Secure ranked keyword search over encrypted cloud data. In: Guerrero JE, ed. Proc. of the 2010 Int'l Conf. on Distributed Computing Systems. Los Alamitos: IEEE Computer Society, 2010. 253-262. [doi: 10.1109/ICDCS. 2010.34]
    [4] Sun W, Wang B, Cao N, Li M, Lou W, Hou YT, Li H. Privacy-Preserving multi-keyword text search in the cloud supporting similarity-based ranking. In: Proc. of the ASIA 8th ACM Symp. on Information, Computer and Communications Security (CCS 2013). New York: ACM Press, 2013. 71-82. [doi: 10.1145/2484313.2484322]
    [5] Leslie H, Jain R, Birdsall D, Yaghmai H. Efficient search of multi-dimensional B-trees. In: Dayal U, ed. Proc. of the 21th Int'l Conf. on Very Large Data Bases (VLDB'95). San Francisco: Morgan Kaufmann Publishers Inc., 1995. 710-719.
    [6] Ciaccia P, Patella M, Rabitti F, Zezula P. Indexing metric spaces with M-tree. In: Cristani M, ed. Proc. of the SEBD. 1997. 67-86.
    [7] Wang C, Cao N, Ren K, Lou WJ. Enabling secure and efficient ranked keyword search over outsourced cloud data. IEEE Trans. on Parallel and Distributed Systems, 2012,23(8):1467-1479. [doi: 10.1109/TPDS.2011.282]
    [8] Yu S, Wang C, Ren K, Lou W. Achieving secure, scalable, and fine-grained data access control in cloud computing. In: Proc. of the 2010 IEEE INFOCOM. New York: IEEE Press, 2010. 1-9. [doi: 10.1109/INFCOM.2010.5462174]
    [9] Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis. New Jersey: John Wiley & Sons, 2005. 108-110. [doi: 10.1002/9780470316801]
    [10] White D, Jain R. Similarity indexing with the SS-tree. In: Proc. of the 20th Int'l Conf. on Data Engineering. New York: IEEE Press, 1996. 516-523. [doi: 10.1109/ICDE.1996.492202]
    [11] Cao N, Wang C, Li M, Ren K, Lou W. Privacy-Preserving multi-keyword ranked search over encrypted cloud data. IEEE Trans. on Parallel and Distributed Systems, 2014,25(1):222-233. [doi: 10.1109/TPDS.2013.45]
    [12] Witten IH, Moffat A, Bell TC. Managing gigabytes: Compressing and Indexing Documents and Images. 2nd ed., San Francisco: Morgan Kaufmann Publishers, 1999. 181-184.
    [13] Salton G, Buckley C. Term-Weighting approaches in automatic text retrieval. Information Processing & Management, 1988,24(5): 513-523. [doi: 10.1016/0306-4573(88)90021-0]
    [14] Wong WK, Cheung DW, Kao B, Mamoulis N. Secure kNN computation on encrypted databases. In: Binnig C, ed. Proc. of the 2009 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2009). New York: ACM Press, 2009. 139-152. [doi: 10.1145/ 1559845.1559862]
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

田雪,朱晓杰,申培松,陈驰,邹洪.基于相似查询树的快速密文检索方法.软件学报,2016,27(6):1566-1576

复制
分享
文章指标
  • 点击次数:5446
  • 下载次数: 7697
  • HTML阅读次数: 3307
  • 引用次数: 0
历史
  • 收稿日期:2015-08-14
  • 最后修改日期:2015-10-09
  • 在线发布日期: 2016-01-22
文章二维码
您是第19727511位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号