利用特征向量构造基于身份的全同态加密体制
作者:
基金项目:

河南省科技创新杰出青年基金(134100510002);河南省基础与前沿技术研究(142300410002);数学工程与先进计算国家重点实验室开放基金


Identity-Based Fully Homomorphic Encryption from Eigenvector
Author:
Fund Project:

The Province Foundation for Science Innovation Distinguished Young Scholars of He’nan (134100510002); He’nan Province foundation and Advanced Technology Study (142300410002); State Key Laboratory of Mathematical Engineering and Advanced Computing Open Foundation

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    全同态加密可以在不解密的条件下对密文进行有效运算,为云计算的数据隐私保护提供了一种理想的解决方案,但目前已有的全同态加密体制普遍存在公钥尺寸大、计算效率较低等问题.利用构造特征向量的思想,基于任意次数分圆环代数结构,提出全同态加密体制,并提出一种转换方法将该体制转换为基于身份的全同态加密体制.与已有体制相比,使用特征向量思想构造基于身份的体制有效地避免了计算密钥,实现了真正意义上基于身份的体制;相比次数为2的方幂特殊分圆环,使用任意次数分圆环最大会使加密体制的计算效率提升一倍,同时还可应用单指令多数据(single instruction multiple data,简称SIMD)技术进一步提升计算和存储效率.

    Abstract:

    Fully homomorphic encryption allows valid operation on encrypted data without decrypting, providing a new solution to data confidentiality and privacy protection. However, current fully homomorphic encryption schemes are faced with challenges like large size of public key or low efficiency in calculation. To achieve an efficient fully homomorphic encryption scheme, this work provides an identity-based fully homomorphic encryption scheme employing the idea of eigenvector and arbitrary cyclotomic rings. Compared with existing scheme, this identity-based fully homomorphic encryption with eigenvector is able to successfully avoid the evaluation key, resulting a true identity-based scheme. Compared with special cyclotomic rings whose degree is power of 2, utilizing arbitrary cyclotomic rings may double the efficiency of encryption schemes and further improve the efficiency of calculation and memory using SIMD technique.

    参考文献
    [1] Rivest RL, Adleman L, Dertouzos ML. On data banks and privacy homomorphisms. Foundations of Secure Computation, 1978, 4(11):169-180.
    [2] Gentry C. Fully homomorphic encryption using ideal lattices. 2009,9:169-178. http://www.cs.cmu.edu/~odonnell/hits09/gentry- homomorphic-encryption.pdf [doi: 10.1145/1536414.1536440]
    [3] Smart NP, Vercauteren F. Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Proc. of the Public Key Cryptography (PKC 2010). Berlin, Heidelberg: Springer-Verlag, 2010. 420-443. [doi: 10.1007/978-3-642-13013-7_25]
    [4] Van Dijk M, Gentry C, Halevi S, Vaikuntanathan V. Fully homomorphic encryption over the integers. In: Proc. of the Advances in Cryptology (EUROCRYPT 2010). Berlin, Heidelberg: Springer-Verlag, 2010. 24-43. [doi: 10.1007/978-3-642-13190-5_2]
    [5] Smart NP, Vercauteren F. Fully homomorphic SIMD operations. Designs, Codes and Cryptography, 2014,71(1):57-81. [doi: 10.1007/s10623-012-9720-4]
    [6] Shoup V. A Computational Introduction to Number Theory and Algebra. Cambridge University Press, 2009. [doi: 10.1017/ CBO 9781139165464]
    [7] Stehlé D, Steinfeld R. Faster fully homomorphic encryption. In: Proc. of the Advances in Cryptology (ASIACRYPT 2010). Berlin, Heidelberg: Springer-Verlag, 2010. 377-394. [doi: 10.1007/978-3-642-17373-8_22]
    [8] Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption from (standard) LWE. SIAM Journal on Computing, 2014, 43(2):831-871. [doi: 10.1109/focs.2011.12]
    [9] Regev O. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM, 2009,56(6):34. [doi: 10. 1145/1060590.1060603]
    [10] Peikert C. Public-Key cryptosystems from the worst-case shortest vector problem. In: Proc. of the 41st Annual ACM Symp. on Theory of Computing. ACM Press, 2009. 333-342. [doi: 10.1145/1536414.1536461]
    [11] Brakerski Z, Gentry C, Vaikuntanathan V. (Leveled) fully homomorphic encryption without bootstrapping. In: Proc. of the 3rd Innovations in Theoretical Computer Science Conf. ACM Press, 2012. 309-325. [doi: 10.1145/2090236.2090262]
    [12] Lyubashevsky V, Peikert C, Regev O. On ideal lattices and learning with errors over rings. Journal of the ACM, 2013, 60(6):43. [doi: 10.1145/2535925]
    [13] Brakerski Z, Vaikuntanathan V. Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Proc. of the Advances in Cryptology (CRYPTO 2011). Berlin, Heidelberg: Springer-Verlag, 2011. 505-524. [doi: 10.1007/978-3-642- 22792-9_29]
    [14] Lyubashevsky V, Peikert C, Regev O. A toolkit for ring-LWE cryptography. In: Proc. of the Advances in Cryptology (EUROCRYPT 2013). Berlin, Heidelberg: Springer-Verlag, 2013. 35-54. [doi: 10.1007/978-3-642-38348-9_3]
    [15] Shamir A. Identity-Based cryptosystems and signature schemes. In: Proc. of the Advances in Cryptology. Berlin, Heidelberg: Springer-Verlag,1985. 47-53. [doi: 10.1007/3-540-39568-7_5]
    [16] Boneh D, Lynn B, Shacham H. Short signatures from the Weil pairing. In: Proc. of the Advances in Cryptology (ASIACRYPT 2001). Berlin, Heidelberg: Springer-Verlag, 2001. 514-532. [doi: 10.1007/3-540-45682-1_30]
    [17] Cocks C. An identity based encryption scheme based on quadratic residues. In: Proc. of the Cryptography and Coding. Berlin, Heidelberg: Springer-Verlag, 2001. 360-363. [doi: 10.1007/3-540-45325-3_32]
    [18] Gentry C, Peikert C, Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions. In: Proc. of the 40th Annual ACM Symp. on Theory of Computing. ACM Press, 2008. 197-206. [doi: 10.1145/1374376.1374407]
    [19] Guang Y, Gu CX, Zhu YF, Zheng YH, Fei JL. Identity-Based fully homomorphic encryption from learning with error problem. Journal on Communications, 2014,35(2):111-117 (in Chinese with English abstract).
    [20] Gentry C, Sahai A, Waters B. Homomorphic encryption from learning with errors: Conceptually-Simpler, asymptotically-faster, attribute-based. In: Proc. of the Advances in Cryptology (CRYPTO 2013). Berlin, Heidelberg: Springer-Verlag, 2013. 75-92. [doi: 10.1007/978-3-642-40041-4_5]
    [21] Gentry C, Halevi S, Smart NP. Fully homomorphic encryption with polylog overhead. In: Proc. of the Advances in Cryptology (EUROCRYPT 2012). Berlin, Heidelberg: Springer-Verlag, 2012. 465-482. [doi: 10.1007/978-3-642-29011-4_28]
    [22] Brakerski Z, Gentry C, Halevi S. Packed ciphertexts in LWE-based homomorphic encryption. In: Proc. of the Public-Key Cryptography (PKC 2013). Berlin, Heidelberg: Springer-Verlag, 2013. 1-13. [doi: 10.1007/978-3-642-36362-7_1]
    [23] Gentry C, Halevi S, Smart NP. Homomorphic evaluation of the AES circuit. In: Proc. of the Advances in Cryptology (CRYPTO 2012). Berlin, Heidelberg: Springer-Verlag, 2012. 850-867. [doi: 10.1007/978-3-642-32009-5_49]
    [24] Gentry C, Halevi S. Implementing Gentry's fully-homomorphic encryption scheme. In: Proc. of the EUROCRYPT 2011. 2011. 129-148. [doi:10.1007/978-3-642-20465-4_9]
    附中文参考文献:
    [19] 光焱,顾纯祥,祝跃飞,郑永辉,费金龙.利用容错学习问题构造基于身份的全同态加密体制.通信学报,2014,35(2):111-117.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

康元基,顾纯祥,郑永辉,光焱.利用特征向量构造基于身份的全同态加密体制.软件学报,2016,27(6):1487-1497

复制
分享
文章指标
  • 点击次数:5829
  • 下载次数: 8079
  • HTML阅读次数: 3072
  • 引用次数: 0
历史
  • 收稿日期:2015-08-08
  • 最后修改日期:2015-10-09
  • 在线发布日期: 2016-01-22
文章二维码
您是第19727414位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号