运用栅栏函数验证连续系统的有界时间安全性
作者:
基金项目:

国家自然科学基金(11271034,11290141)


Barrier Certificate Generation for Safety Verification of Continuous Systems for a Bounded Time
Author:
Fund Project:

National Natural Science Foundation of China (11271034, 11290141)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    栅栏函数在连续系统验证方面有着广泛的应用,其主要想法在于:在可达集和非安全集之间寻找一个栅栏,从初始区域出发的路径不会越过这个栅栏,而非安全区域在栅栏的另外一端.这样,就可以通过寻找栅栏函数来验证一个系统的安全性.近年来,已有一些工作讨论连续系统在无界时间情况下的栅栏函数生成.但是对于有些系统,人们可能只关心其在有界时间内的安全性.因为在无界时间内不安全并不能说明在给定时间内也是不安全的,所以对于这类问题,无界时间栅栏函数方法并不适用.受无界时间栅栏函数方法的启发,针对有界时间的情况,给出有界时间栅栏函数生成方法.首先给出有界时间栅栏函数的一些充分条件,对于多项式系统,将多项式非负的条件做平方和松弛后利用平方和规划工具求解这些充分条件得到栅栏函数;对于初等系统(包含一些初等函数),先将该初等系统转化为一个多项式系统,然后求解对应多项式系统的栅栏函数.对一些无界时间不安全的实例,演示了该方法在验证有界时间安全性问题上的有效性.

    Abstract:

    Barrier certificates have been widely used in verification of continuous systems.The main idea is to find a barrier which separates the reachable set from the unsafe set such that all the trajectories starting from the initial set will never go across the barrier.Thus the system's safety can be guaranteed by constructing a barrier.In recent years, barrier certificates have been successfully used for verification of continuous systems with unbounded time.However sometimes the safety for bounded time needs to be addressed.Since a system is unsafe with unbounded time cannot imply it is also unsafe with a bounded time, the unbounded time barrier certificate method could fail to verify the safety with bounded time.In this paper, a method is presented to generate a bounded time barrier certificate for safety verification of continuous systems with bounded time.Some sufficient conditions for the bounded time barrier certificate are specified.If the continuous system is a polynomial system, relax all the conditions of positive semi-definite polynomial to the sum of squares(SOS) polynomial and then use semi-definite programming(SDP) to solve the conditions for a bounded time barrier certificate;if the continuous system is an elementary system(containing some elementary functions), transform it to a polynomial system approximately, and then solve the corresponding polynomial system for a bounded time barrier certificate.For some practical examples which are unsafe for unbounded time, the paper shows the effectiveness of the proposed method for generating bounded time barriers.

    参考文献
    [1] Alur R, Courcoubetis C, Halbwachs N, Henzinger T, Ho PH, Nicollin X, Olivero A, Sifakis J, Yovine S. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 1995,138(1):3-34.[doi:10.1016/0304-3975(94)00202-T]
    [2] Alur R, Courcoubetis C, Henzinger TA, Ho PH. Hybrid automata:An algorithmic approach to the specification and verification of hybrid systems. In:Proc. of the Hybrid Systems. LNCS 736, Springer-Verlag, 1993. 209-229.[doi:10.1007/3-540-57318-6_30]
    [3] Bu L, Li Y, Wang LZ, Chen X, Li XD. Bach 2:Bounded reachability checker for compositional linear hybrid systems. In:Proc. of the Conf. on Design, Automation and Test in Europe. European Design and Automation Association, 2010. 1512-1517.[doi:10.1109/DATE.2010.5457051]
    [4] Gulwani S, Tiwari A. Constraint-Based approach for analysis of hybrid systems. In:Proc. of the CAV 2008. LNCS 5123, Springer-Verlag, 2008. 19Õ 03.[doi:10.1007/978-3-540-70545-1_18]
    [5] Henzinger TA, Sifakis J. The embedded systems design challenge. In:Proc. of the FM 2006. LNCS 4085, Springer-Verlag, 2006. 1-15.[doi:10.1007/11813040_1]
    [6] Lee E. What's ahead for embedded software? IEEE Computer, 2000,33(9):18-26.[doi:10.1109/2.868693]
    [7] Maler O, Manna Z, Pnueli A. From timed to hybrid systems. In:Proc. of the Real-Time:Theory in Practice, REX Workshop. Springer-Verlag, 1992. 447-484.[doi:10.1007/BFb0032003]
    [8] Zhan NJ, Wang SL, Zhao HJ. Formal modelling, analysis and verification of hybrid systems. In:Proc. of the Unifying Theories of Programming and Formal Engineering Methods. LNCS 8050, Springer-Verlag, 2013. 207-281.[doi:10.1007/978-3-642-39721-9_5]
    [9] Henzinger TA, Ho PH. Algorithmic analysis of nonlinear hybrid systems. In:Proc. of the CAV'95. LNCS 939, Springer-Verlag, 1995. 225-238.[doi:10.1007/3-540-60045-0_53]
    [10] Lafferriere G, Pappas GJ, Yovine S. Symbolic reachability computation for families of linear vector fields. Journal of Symbolic Computation, 2001,32(3):231-253.[doi:10.1006/jsco.2001.0472]
    [11] Puri A, Varaiya P. Decidability of hybrid systems with rectangular differential inclusions. In:Proc. of the CAV'94. LNCS 818, Springer-Verlag, 1994. 95-104.[doi:10.1007/3-540-58179-0_46]
    [12] Sanfelice RG, Teel AR. Dynamical properties of hybrid systems simulators. Automatica, 2010,46(2):239-248.[doi:10.1016/j.automatica.2009.09.026]
    [13] Prajna S, Jadbabaie A. Safety verification of hybrid systems using barrier certificates. In:Proc. of the HSCC 2004. LNCS 2993, Springer-Verlag, 2004. 477-492.[doi:10.1007/978-3-540-24743-2_32]
    [14] Kong H, He F, Song XJ, Hung WNN, Gu M. Exponential-Condition based barrier certificate generation for safety verification of hybrid systems. In:Proc. of the CAV 2013. LNCS 8044, Springer-Verlag, 2013. 242-257.[doi:10.1007/978-3-642-39799-8_17]
    [15] Kong H, Song XY, Han D, Gu M, Sun JG. A new barrier certificate for safety verification of hybrid systems. The Computer Journal, 2014,57(7):1033-1045.[doi:10.1093/comjnl/bxt059]
    [16] Dai LY, Gan T, Xia BC, Zhan NN. Barrier certificates revisited. http://arxiv.org/abs/1310.6481
    [17] Dai LY, Xia BC, Zhan NJ. Generating non-linear interpolants by semidefinite programming. In:Proc. of the CAV 2013. LNCS 8044, Springer-Verlag, 2013. 364-380.[doi:10.1007/978-3-642-39799-8_25]
    [18] Löfberg J. Pre-and post-processing sum-of-squares programs in practice. IEEE Trans. on Automatic Control, 2009,54(5):1007-1011. http://users.isy.liu.se/johanl/yalmip/[doi:10.1109/TAC.2009.2017144]
    [19] Parrilo PA. Structured semidefinite programs and semi-algebraic geometry methods in robustness and optimization[Ph.D. Thesis]. California Inst. of Tech., 2000.
    [20] Khalil HK. Nonlinear Systems. 3rd ed., Prentice Hall, 2002.
    [21] Han JJ, Jin Z, Xia BC. Proving inequalities and solving global optimization problems via simplified CAD projection. Journal of Symbolic Computation, 2016,72(2016):206-230.[doi:10.1016/j.jsc.2015.02.007]
    [22] Liu J, Zhan NJ, Zhao HJ, Zou L. Abstraction of elementary hybrid systems by variable transformation. In:Proc. of the FM 2015. LNCS 9109. 2015. 360-377.[doi:10.1007/978-3-319-19249-9_23]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

甘庭,夏壁灿.运用栅栏函数验证连续系统的有界时间安全性.软件学报,2016,27(3):645-654

复制
分享
文章指标
  • 点击次数:5110
  • 下载次数: 6707
  • HTML阅读次数: 2817
  • 引用次数: 0
历史
  • 收稿日期:2015-07-16
  • 最后修改日期:2015-10-20
  • 在线发布日期: 2016-01-06
文章二维码
您是第20451166位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号