基于关键点路径的快速测试用例自动生成方法
作者:
基金项目:

国家自然科学基金(61472095,61573362);黑龙江省教育厅智能教育与信息工程重点实验室开放基金;牡丹江师范学院科研基金(QN201603,QY2014003,MNUB201414,FD2014001,SY2014001)


Fast Automatic Generation Method for Software Testing Data Based on Key-Point Path
Author:
Fund Project:

National Natural Science Foundation of China (61472095, 61573362); Heilongjiang Provincial Education Depart -ment Key Laboratory of Intelligent Education and Information Engineering; Research Foundation of Mudanjiang Normal University (QN201603, QY2014003, MNUB201414, FD2014001, SY2014001)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    测试数据的自动生成,是提高软件测试效率的重要手段.从软件测试工程实践的角度提出快速生成测试数据的完整模型,更有利于提高测试数据生成效率.为此:(1)提出关键点路径表示法,以得出待测程序的理论路径数,并快速确定已覆盖路径的邻近路径;(2)用随机生成的数据运行简化后的插装程序,得到部分测试数据;(3)将理论路径分成易覆盖路径、难覆盖路径和不可行路径;(4)根据已覆盖路径及其测试数据提供的信息,使用遗传算法生成难覆盖路径的测试数据.仿真实验结果表明了所提方法的有效性.

    Abstract:

    Automatic generation of testing data is an important means for improving the efficiency of software testing. Focusing on the engineering practice of software testing, a fast automatic method is proposed to improve the efficiency of testing data generation.(1) A key-point path expression method is proposed to calculate the number of theoretical paths, and find the covered paths' neighbors;(2) Brief instrumented program is executed to get some testing data by using the testing data generated from random algorithm;(3) The theoretical paths are divided into three parts:Easy-Cover paths, hard-cover paths and infeasible paths;(4) According to the information of covered paths and their testing data, the data of hard-cover paths will be generated by genetic algorithm. Simulation experimental results show that the proposed method is efficient.

    参考文献
    [1] Qiu XK, Li XD. A path-oriented tool supporting for testing. Acta Electronica Sinica, 2004,32(12A):231-234(in Chinese with English abstract).
    [2] Gong DW, Yao XJ, Zhang Y. Evolution Theory and Application for Testing Data Generation. Beijing:Science Press, 2014. 8-32(in Chinese).
    [3] Sthamer HH. The automatic generation of software test data using genetic algorithms[Ph.D. Thesis]. Pontyprid:University of Glamorgan, 1995.
    [4] Mansour N, Salame M. Data generation for path testing. Software Quality Journal, 2004,12(2):121-136.[doi:10.1023/B:SQJO. 0000024059.72478.4e]
    [5] Aldeida A, Lars G. Test data generation with a Kalman filter-based adaptive genetic. The Journal of Systems and Software, 2015, 103:343-352.[doi:10.1016/j.jss.2014.11.035]
    [6] Jiang SJ, Shi JJ, Zhang YM, Han H. Automatic test data generation based on reduced adaptive particle swarm optimization algorithm. Neurocomputing, 2015,158:109-116.[doi:10.1016/j.neucom.2015.01.062]
    [7] Ahmed MA, Hermadi I. GA-Based multiple paths test data generator. Computer & Operations Research, 2008,35(10):3107-3124.[doi:10.1016/j.cor.2007.01.012]
    [8] Gong DW, Zhang WQ, Zhang Y. Evolutionary generation of test data for multiple paths coverage. Chinese Journal of Electronics, 2011,19(2):233-237.
    [9] Ghiduk AS. Automatic generation of basis test paths using variable length genetic algorithm. Information Processing Letters, 2014, 114:304-316.[doi:10.1016/j.ipl.2014.01.009]
    [10] Gong DW, Zhang Y. Novel evolutionary generation approach to test data for multiple paths coverage. Acta Electronic Sinica, 2010,38(6):1299-1304(in Chinese with English abstract).
    [11] Paul CJ, Wrote; Han K, Du XT, Trans. Software Testing. 2nd ed., Beijing:Machine Press, 2003. 62-83(in Chinese).
    [12] Genford JM, Wrote; Zhang XM, Huang L, Trans. The Art of Software Testing. 3rd ed., Beijing:Machine Press, 2012. 40-68(in Chinese).
    [13] Long Q, Wu CZ, Huang TW, Wang XY. A genetic algorithm for unconstrained multi-objective optimization. Swarm and Evolutionary Computation, 2015,22:1-14.[doi:10.1016/j.swevo.2015.01.002]
    [14] Zheng JN, Chien CF, Mitsuo G. Multi-Objective multi-population biased random-key genetic algorithm for the 3-D container loading problem. Computers & Industrial Engineering, 2014,89:80-87.[doi:10.1016/j.cie.2014.07.012]
    [15] Ngoc M, Tan HBK. Heuristics-Based infeasible path detection for dynamic test data generation. Information and Software Technology, 2008,50(7-8):641-655.[doi:10.1016/j.infsof.2007.06.006]
    [16] Gong DW, Yao XJ. Automatic detection of infeasible paths in software testing. IET Software, 2010,4(5):361-370.[doi:10.1049/iet-sen.2009.0092]
    [17] Mickael D, Bernard B, Arnaud G. Infeasible path generalization in dynamic symbolic execution. Information and Software Technology, 2015,58:403-418.[doi:10.1016/j.infsof.2014.07.012]
    [18] SIR. A repository of software-related artifacts meant to support rigorous controlled experimentation. http//sir.unl.edu/portal/index.php
    附中文参考文献:
    [1] 邱晓康,李宣东.一个面向路径的软件测试辅助工具.电子学报,2004,32(12A):231-234.
    [2] 巩敦卫,姚香娟,张岩.测试数据进化生成理论及应用.北京:科学出版社,2014.8-32.
    [10] 巩敦卫,张岩.一种新的多路径覆盖测试数据进化生成方法.电子学报,2010,38(6):1299-1304.
    [11] Paul CJ,著;韩柯,杜旭涛,译.软件测试.第2版,北京:机械工业出版社,2003.62-83.
    [12] Genford JM,著;张晓明,黄琳,译.软件测试的艺术.第3版,北京:机械工业出版社,2012.40-68.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁蕊,董红斌,张岩,冯宪彬.基于关键点路径的快速测试用例自动生成方法.软件学报,2016,27(4):814-827

复制
分享
文章指标
  • 点击次数:5133
  • 下载次数: 7149
  • HTML阅读次数: 2573
  • 引用次数: 0
历史
  • 收稿日期:2015-09-01
  • 最后修改日期:2015-10-15
  • 在线发布日期: 2016-01-14
文章二维码
您是第19791963位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号