基于密度-距离图的交互式体数据分类方法
作者:
基金项目:

国家自然科学基金(61402540,61103108);湖南省教育厅科学研究项目(13C095);湖南省科技支撑计划(2014GK3049)


Interactive Volume Data Classification Based on Density-Distance Graph
Author:
Fund Project:

National Natural Science Foundation of China (61402540, 61103108); Scientific Research Fund of Hu’nan Provincial Education Department of China (13C095); Hu’nan Provincial Science and Technology Foundation of China (2014GK3049)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    体数据分类是体绘制中传递函数设计的核心问题.标量值-梯度模直方图作为表征体数据的一种经典二维特征空间,已被广泛应用于分类体数据.然而,大部分已有方法存在过于依赖分类算法的参数设置、运算效率低、交互复杂度高等问题.以标量值-梯度模直方图的密度分布为基础,并依据物质中心密度大且物质中心间距离远这一特性,首先快速计算每个数据点的密度及每个数据点到比其密度大的点的最小距离;然后,将所有数据点投影到密度-距离图,并以密度-距离图作为人机接口,使用户能够交互地选择多个密度中心来分类体数据并设置传递函数.通过多组实验验证,所提出的方法无需预设物质类别的数量,分割标量值-梯度模直方图的准确度较高且速度较快,所设计的密度-距离图是一个有效的人机交互接口,可以有效地引导用户完成由粗糙到精细的递进式体数据分类和可视化过程.

    Abstract:

    Volume data classification is a core issue of transfer function in volume rendering. Scalar-gradient magnitude histogram of volume is a classic feature space, and has been applied in volume classification for its nice result in visual extraction of boundaries between different materials. However, the design of transfer function based on scalar-gradient histogram has proven as a time-consuming and complex task which is hard for users to conduct interactions. In this paper, scalar-gradient histogram is treated as a density distribution of all voxels. This approach assumes that the density of a material center is higher than their neighbors and the distance between two material centers is far enough. By computing the minimum distance between each points and all other points with higher density in scalar-gradient histogram, a density-distance graph is constructed based on densities and minimum distances of all points. The density peaks are easily observed in the graph and can guide the users to select centers of each material as a progressive volume classification process through a set of specified interactions. Experimental results demonstrate that the presented approach does not require the prior knowledge of categories, and the volume classification is accurate with high performance.

    参考文献
    [1] Pfister H, Lorensen B, Bajaj C, Kindlmann G, Schroeder W, Avila LS, Martin K, Machiraju R, Lee J. The transfer function bakeoff. IEEE Computer Graphics and Applications, 2001,21(3):16-22.[doi:10.1109/38.920623]
    [2] Guo HQ, Yuan XR. Survey on transfer functions in volume visualization. Journal of Computer-Aided Design & Computer Graphics, 2012,24(10):1249-1258(in Chinese with English abstract).
    [3] Kindlmann G, Durkin JW. Semi-Automatic generation of transfer functions for direct volume rendering. In:Proc. of the 1998 Symp. of Volume Visualization. New York:ACM Press, 1998. 79-86.[doi:10.1145/288126.288167]
    [4] Kniss J, Kindlmann G, Hansen C. Multidimensional transfer functions for interactive volume rendering. IEEE Trans. on Visualization and Computer Graphics, 2002,8(3):270-285.[doi:10.1109/TVCG.2002.1021579]
    [5] Maciejewski R, Woo I, Chen W, Ebert DS. Structuring feature space:A non-parametric method for volumetric transfer function generation. IEEE Trans. on Visualization & Computer Graphics, 2009,15(6):1473-1480.[doi:10.1109/TVCG.2009.185]
    [6] Wang YH, Chen W, Zhang J, Dong TX, Shan GH, Chi XB. Efficient volume exploration using the Gaussian mixture model. IEEE Trans. on Visualization and Computer Graphics, 2011,17(11):1560-1573.[doi:10.1109/TVCG.2011.97]
    [7] Ip CY, Varshney A, JaJa J. Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE Trans. on Visualization and Computer Graphics, 2012,18(12):2355-2363.[doi:10.1109/TVCG.2012.231]
    [8] Rodriguez A, Laio A. Clustering by fast search and find of density peaks. Science, 2014,344(6191):1492-1496.[doi:10.1126/science.1242072]
    [9] Zhou FF, Zhao Y, Ma KL. Parallel mean shift for interactive volume segmentation. In:Proc. of the 1st Int'l Conf. on Machine Learning in Medical Imaging. LNCS 6357, Berlin, Heidelberg:Springer-Verlag, 2010. 67-75.[doi:10.1007/978-3-642-15948-0_9]
    [10] Marks J, Andalman B, Beardsley PA, Freeman W, Gibson S, Hodgins J, Kang T, Mirtich B, Pfister H, Ruml W, Ryall K, Seims J, Shieber S. Design galleries:A general approach to setting parameters for computer graphics and animation. In:Proc. of the 24th Annual Conf. on Computer Graphics and Interactive Techniques. Los Angeles:Association for Computing Machinery, 1997. 389-400.[doi:10.1145/258734.258887]
    [11] Tory M, Potts S, Moller T. A parallel coordinates style interface for exploratory volume visualization. IEEE Trans. on Visualization and Computer Graphics, 2005,11(1):71-80.[doi:10.1109/TVCG.2005.2]
    [12] Zhou FF, Fan XP, Yang B. Prospects and current studies on designing transfer function in volume rendering. Journal of Image and Graphics, 2008,13(6):1034-1047(in Chinese with English abstract).
    [13] Carlos D, Ma KL. Size-Based transfer functions:A new volume exploration technique. IEEE Trans. on Visualization and Computer Graphics, 2008,14(6):1380-1387.[doi:10.1109/TVCG.2008.162]
    [14] Fujishiro I, Azuma T, Takeshima Y. Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis. In:Proc. of the 10th IEEE Visualization 1999 Conf. (VIS'99). Washington:IEEE Computer Society, 1999. 467-563.[doi:10.1109/VISUAL.1999.809932]
    [15] Zhou JL, Takatsuka M. Automatic transfer function generation using contour tree controlled residue flow model and color harmonics. IEEE Trans. on Visualization and Computer Graphics, 2009,15(6):1481-1488.[doi:10.1109/TVCG.2009.120]
    [16] Sereda P, Bartroli AV, Serlie IWO, Gerritsen FA. Visualization of boundaries in volumetric datasets using LH histograms. IEEE Trans. on Visualization and Computer Graphics, 2006,12(2):208-218.[doi:10.1109/TVCG.2006.39]
    [17] Sereda P, Vilanova A, Gerritsen FA. Automating transfer function design for volume rendering using hierarchical clustering of material boundaries. In:Proc. of the 8th Joint Eurographics/IEEE VGTC Conf. on Visualization. EuroGraphics Association, 2006. 243-250.[doi:10.2312/VisSym/EuroVis06/243-250]
    [18] Tzeng FY, Lum EB, Ma KL. An intelligent system approach to higher-dimensional classification of volume data. IEEE Trans. on Visualization and Computer Graphics, 2005,11(3):273-284.[doi:10.1109/TVCG.2005.38]
    [19] Correa CD, Ma KL. Visibility histograms and visibility-driven transfer functions. IEEE Trans. on Visualization and Computer Graphics, 2011,17(2):192-204.[doi:10.1109/TVCG.2010.35]
    [20] Ruiz M, Bardera A, Boada I, Viola I, Feixas M, Sbert M. Automatic transfer functions based on informational divergence. IEEE Trans. on Visualization and Computer Graphics, 2011,17(12):1932-1941.[doi:10.1109/TVCG.2011.173]
    [21] Guo HQ, Xiao H, Yuan XR. Scalable multivariate volume visualization and analysis based on dimension projection and parallel coordinates. IEEE Trans. on Visualization and Computer Graphics, 2012,18(9):1397-1410.[doi:10.1109/TVCG.2012.80]
    [22] Higuera FV, Sauber N, Tomandl B, Nimsky C, Greiner G, Hastreiter P. Automatic adjustment of bidimensional transfer functions for direct volume visualization of intracranial aneurysms. In:Proc. of the SPIE Medical Imaging. SPIE, 2004. 275-284.[doi:10. 1117/12.535534]
    [23] Roettger S, Bauer M, Stamminger M. Spatialized transfer functions. In:Proc. of the 7th Joint Eurographics/IEEE VGTC Conf. on Visualization. Eurographics Association, 2005. 271-278.[doi:10.2312/VisSym/EuroVis05/271-278]
    [24] Huang RZ, Ma KL. RGVis:Region growing based techniques for volume visualization. In:Proc. of the Pacific Conf. on Computer Graphics and Applications. Washington:IEEE Computer Society, 2003. 355-363.[doi:10.1109/PCCGA.2003.1238277]
    [25] Zhou FF, Huang W, Li JC. Extending dimensions in radviz based on mean shift. In:Proc. of the 2015 IEEE Pacific Visualization Symp. Hangzhou:IEEE, 2015. 111-115.[doi:10.1109/PACIFICVIS.2015.7156365]
    附中文参考文献:
    [2] 郭翰琦,袁晓如.体数据可视化传递函数研究.计算机辅助设计与图形学学报,2012,24(10):1249-1258.
    [12] 周芳芳,樊晓平,杨斌.体绘制中传递函数设计的研究现状与展望.中国图像图形学报,2008,13(6):1034-1047.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周芳芳,高飞,刘勇刚,梁兴,赵颖.基于密度-距离图的交互式体数据分类方法.软件学报,2016,27(5):1061-1073

复制
分享
文章指标
  • 点击次数:4659
  • 下载次数: 6245
  • HTML阅读次数: 2590
  • 引用次数: 0
历史
  • 收稿日期:2015-07-31
  • 最后修改日期:2015-09-19
  • 在线发布日期: 2016-05-06
文章二维码
您是第19765680位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号