运动目标三维轨迹可视化与关联分析方法
作者:
基金项目:

国家自然科学基金(U1435220,61173058,61232013,61173057);国家高技术研究发展计划(863)(2015AA050204,2012AA02A608)


Method of Three Dimensional Trajectory Visualization and Relational Analysis on Moving Objects
Author:
Fund Project:

National Natural Science Foundation of China (U1435220, 61173058, 61232013, 61173057); National High-Tech R&D Program of China (863) (2015AA050204, 2012AA02A608)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着治安监控系统的普及,越来越多的监控摄像头被安装在各个交通道路和公共场所中,每天都产生大量的监控视频.如今,监控视频分析工作主要是采用人工观看的方式来排查异常,以这种方式来分析视频内容耗费大量的人力和时间.目前,关于视频分析方面的研究大多是针对目标个体的异常行为检测和追踪,缺乏针对对象之间的关联关系的分析,对视频中的一些对象和场景之间的关联关系等还没有较为有效的表示和分析方法.针对这一现状,提出一种基于运动目标三维轨迹的关联视频可视分析方法来辅助人工分析视频,首先对视频资料进行预处理,获取各个目标对象的运动轨迹信息,由于二维轨迹难以处理轨迹的自相交、循环运动和停留等现象,并且没有时间信息就难以对同一空间内多个对象轨迹进行的关联性分析,于是结合时间维度对轨迹进行三维化扩展.该方法支持草图交互方式来操作,在分析过程中进行添加草图注释来辅助分析.可结合场景和对象的时空关系对轨迹进行关联性计算,得出对象及场景之间的关联模型,通过对对象在各个场景出现状况的统计,结合人工预先设定的规则,可实现对异常行为报警,辅助用户决策.

    Abstract:

    With the popularity of security surveillance systems, more and more surveillance cameras have been installed at various traffic roads and public places. A lot of surveillance videos are produced every day. Currently, surveillance video analysis is being done by manual monitoring, which is very inefficient. Most researches on video analysis focus on abnormal behavior detection and tracking of the target individual and lack of analysis of associations between objects/scenes, and there have no effectively representation and analytical methods for the association between objects and scenes. This paper presents a three-dimensional trajectory of moving objects associated video visual analysis to assist manual analysis of videos. First, video data preprocessed to get trajectory information of target object. Because two-dimensional trajectory is unable to deal with the recurring motion, self-intersecting motion and pause, and also lacks of time information, it is difficult be used to analyze correlation between multi-object trajectories in same space. Therefore, time dimension is added to generate three-dimensional trajectory to unite scenes and objects to calculate correlation between trajectories and build the association model. This approach supports sketch interaction so that users can add sketch annotation to assistant analyzing. By utilizing the absence information of objects in certain scene and some predefined rules, the presented approach can be used to alert the abnormal action and assistant user to make corresponding decisions.

    参考文献
    [1] Ou W, Liu R, Jiang HM. Application of intelligent video surveillancetechnology in TV monitor system. Electrical Technology of Intelligent Buildings, 2007,5(1):3-5(in Chinese with English abstract).
    [2] Tian YL, Lu M, Hampapur A. Robust and efficient foreground analysis for real-time video surveillance. In:Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR 2005). IEEE, 2005. 1182-1187.[doi:10.1109/CVPR. 2005.304]
    [3] Hofmann M, Tiefenbacher P, Rigoll G. Background segmentation with feedback:The pixel-based adaptive segmenter. In:Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW 2012). IEEE, 2012. 38-43.[doi:10.1109/CVPRW.2012.6238925]
    [4] Qiao SJ, Jin K, Han N, Tang CJ, Gesangduoji, Gutierrez LA. Trajectory prediction algorithm based on Gaussian mixture model. Ruan Jian Xue Bao/Journal of Software, 2015,26(5):1048-1063(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4796.htm[doi:10.13328/j.cnki.jos.004796]
    [5] Wang L, Liu T, Wang G, Chan KL, Yang Q. Video tracking using learned hierarchical features. IEEE Trans. on Image Processing, 2015,24(4):1424-1435.[doi:10.1109/TIP.2015.2403231]
    [6] Yilmaz A, Li X, Shah M. Contour-Based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004,26(11):1531-1536.[doi:10.1109/TPAMI.2004.96]
    [7] Wang X, Tieu K, Grimson E. Learning semantic scene models by trajectory analysis. In:Proc. of the Computer Vision (ECCV 2006). Berlin, Heidelberg:Springer-Verlag, 2006. 110-123.[doi:10.1007/11744078_9]
    [8] Zhu GY, Huang QM, Xu CS, Rui Y, Jiang SQ, Gao W, Yao HX. Trajectory based event tactics analysis in broadcast sports video. In:Proc. of the 15th Int'l Conf. on Multimedia. ACM Press, 2007. 58-67.[doi:10.1145/1291233.1291250]
    [9] Piciarelli C, Foresti GL, Snidaro L. Trajectory clustering and its applications for video surveillance. In:Proc. of the IEEE Conf. on Advanced Video and Signal Based Surveillance (AVSS 2005). IEEE, 2005. 40-45.[doi:10.1109/AVSS.2005.1577240]
    [10] Bashir F, Khokhar A, Schonfeld D. Real-Time motion trajectory-based indexing and retrieval of video sequences. IEEE Trans. on Multimedia, 2007,9(1):58-65.[doi:10.1109/TMM.2006.886346]
    [11] Nguyen C, Niu Y, Liu F. Direct manipulation video navigation in 3D. In:Proc. of the SIGCHI Conf. on Human Factors in Computing Systems. ACM Press, 2013. 1169-1172.[doi:10.1145/2470654.2466150]
    [12] Shah R, Narayanan PJ. Trajectory based video object manipulation. In:Proc. of the IEEE Int'l Conf. on Multimedia and Expo (ICME 2011). IEEE, 2011. 1-4.[doi:10.1109/ICME.2011.6012069]
    [13] Shah R, Narayanan PJ. Interactive video manipulation using object trajectories and scene backgrounds. IEEE Trans. on Circuits and Systems for Video Technology, 2013,23(9):1565-1576.[doi:10.1109/TCSVT.2013.2248972]
    [14] Meghdadi AH, Irani P. Interactive exploration of surveillance video through action shot summarization and trajectory visualization. IEEE Trans. on Visualization and Computer Graphics, 2013,19(12):2119-2128.[doi:10.1109/TVCG.2013.168]
    [15] Kim K, Chalidabhongse TH, Harwood D, Davis L. Real-Time foreground-background segmentation using codebook model. Real-Time Imaging, 2005,11(3):172-185.[doi:10.1016/j.rti.2004.12.004]
    [16] Lowe DG. Distinctive image features from scale-invariant keypoints. Int'l Journal of Computer Vision, 2004,60(2):91-110.[doi:10.1023/B:VISI.0000029664.99615.94]
    [17] Ma CX, Liu YJ, Fu QF, Liu Y, Fu XL, Dai GZ, Wang HA. Video sketch summarization, interaction and cognition analysis. Science China Information Sciences, 2013,43(8):1012-1023(in Chinese with English abstract).[doi:10.1360/112013-1]
    附中文参考文献:
    [1] 欧维,刘荣,蒋红梅.智能监控技术在电视监控系统中的应用.智能建筑电气技术,2007,5(1):3-5.
    [4] 乔少杰,金琨,韩楠,唐常杰,格桑多吉,Gutierrez LA.一种基于高斯混合模型的轨迹预测算法.软件学报,2015,26(5):1048-1063. http://www.jos.org.cn/1000-9825/4796.htm[doi:10.13328/j.cnki.jos.004796]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭洋,马翠霞,滕东兴,杨祎,王宏安.运动目标三维轨迹可视化与关联分析方法.软件学报,2016,27(5):1151-1162

复制
分享
文章指标
  • 点击次数:4932
  • 下载次数: 8410
  • HTML阅读次数: 2663
  • 引用次数: 0
历史
  • 收稿日期:2015-06-20
  • 最后修改日期:2015-11-09
  • 在线发布日期: 2016-05-06
文章二维码
您是第19732607位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号