基于维度扩展的Radviz可视化聚类分析方法
作者:
基金项目:

国家自然科学基金(61103108,61402540)


Extending Dimensions in Radviz for Visual Clustering Analysis
Author:
Fund Project:

National Natural Science Foundation of China (61103108, 61402540)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    Radviz是一种多维数据可视化技术,它通过径向投影机制将多维数据映射到低维空间,使具有相似特征的数据点投影到相近位置,从而形成可视化聚类效果.Radviz圆周上的维度排列顺序对数据投影结果影响很大,提出将原始维度划分为多个新维度来拓展Radviz圆周上的维度排序空间,从而获得比原始维度条件下更好的可视化聚类效果.该维度划分方法首先计算数据在每个原始维度的概率分布直方图,然后使用均值漂移算法对直方图进行划分,最后根据划分结果将原始维度扩展为多个新维度.提出使用Dunn指数和正确率来量化评估Radviz可视化聚类效果.进行了多组对比实验,结果表明,维度扩展有利于多维数据在Radviz投影中获得更好的可视化聚类效果.

    Abstract:

    Radviz is a radial visualization technique that maps data from multi-dimensional space onto a planar picture. The dimensions placed on the circumference of a circle, called dimension anchors, can be reordered to reveal different patterns in the dataset. Extending the number of dimensions can enhance the flexibility in the placement of dimension anchors to explore meaningful visualizations. This paper describes a method that rationally extends a dimension to multiple new dimensions in Radviz. This method first calculates the probability distribution histogram of a dimension. The mean shift algorithm is applied to get centers of probability density to segment the histogram, and then the dimension can be extended according to the number of segments of the histogram. The paper also suggests using Dunn's index and accuracy rate to find the optimal placement of DAs, so the better effect of visual clustering can be achieved and evaluated after the dimension expansion in Radviz. Finally, it demonstrates the effectiveness of the new approach on synthetic and real world datasets.

    参考文献
    [1] Hoffman PE, Grinstein GG, Marx K, Grose I, Stanley E. DNA visual and analytic data mining. In:Proc. of the IEEE Visualization. 1997. 437-441.[doi:10.1109/VISUAL.1997.663916]
    [2] Ankerst M, Berchtold S, Keim DA. Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In:Proc. of the IEEE Symp. on Information Visualization. 1998. 52-60.[doi:10.1109/INFVIS.1998.729559]
    [3] Leban G, Zupan B, Vidmar G, Bratko I. Vizrank:Data visualization guided by machine learning. Data Mining and Knowledge Discovery, 2006,13(2):119-136.[doi:10.1007/s10618-005-0031-5]
    [4] Albuquerque G, Eisemann M, Lehmann DJ, Theisel H, Magnor M. Improving the visual analysis of high-dimensional datasets using quality measures. In:Proc. of the IEEE Symp. on Visual Analytics Science and Technology. 2010. 19-26.[doi:10.1109/VAST.2010.5652433]
    [5] Sharko J, Grinstein G, Marx KA. Vectorized Radviz and its application to multiple cluster datasets. IEEE Trans. on Visualization and Computer Graphics, 2008,14(6):1444-1427.[doi:10.1109/TVCG.2008.173]
    [6] Ingram S, Munzner T, Irvine V, Tory M, Bergner S, Moller T. Dimstiller:Workflows for dimensional analysis and reduction. In:Proc. of the IEEE Symp. on Visual Analytics Science and Technology. 2010. 3-10.[doi:10.1109/VAST.2010.5652392]
    [7] Sedlmair M, Munzner T, Tory M. Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Trans. on Visualization and Computer Graphics, 2013,19(12):2634-2643.[doi:10.1109/TVCG.2013.153]
    [8] Guo P, Xiao H, Wang Z, Yuan X. Interactive local clustering operations for high dimensional data in parallel coordinates. In:Proc. of the IEEE Pacific Visualization Symp. 2010. 97-104.[doi:10.1109/PACIFICVIS.2010.5429608]
    [9] Kandogan E. Star coordinates:A multi-dimensional visualization technique with uniform treatment of dimensions. In:Proc. of the IEEE Information Visualization Symp. 2000. 9-12.
    [10] Sun Y, Tang JY, Tang DQ, Xiao WD. An improved multivariate data visualization method. Ruan Jian Xue Bao/Journal of Software, 2010,21(6):1462-1472(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3460.htm[doi:10.3724/SP.J.1001. 2010.03460]
    [11] Bertini E, Tatu A, Keim DA. Quality metrics in high-dimensional data visualization:An overview and systematization. IEEE Trans. on Visualization and Computer Graphics, 2011,17(12):2203-2212.[doi:10.1109/TVCG.2011.229]
    [12] Yuan X, Ren D, Wang Z, Guo C. Dimension projection matrix/tree:Interactive subspace visual exploration and analysis of high dimensional data. IEEE Trans. on Visualization and Computer Graphics, 2013,19(12):2625-2633.[doi:10.1109/TVCG.2013.150]
    [13] Mccarthy JF, Marx KA, Hoffman PE, Gee AG, Oneil P, Ujwal ML, Hotchkiss J. Applications of machine learning and high-dimensional visualization in cancer detection, diagnosis, and management. Annals of the New York Academy of Sciences, 2004,1020:239-262.[doi:10.1196/annals. 1310.020]
    [14] Basole RC, Clear T, Hu M, Hu MD, Mehrotra H, Stako J. Understanding interfirm relationships in business ecosystems with interactive visualization. IEEE Trans. on Visualization and Computer Graphics, 2013,19(12):2526-2535.[doi:10.1109/TVCG.2013.209]
    [15] Xu YH, Hong WX, Chen MM. Visual fault diagnosis method based on Radviz and its optimization. Application Research of Computers, 2009,26(3):840-842(in Chinese with English abstract).
    [16] Shi L, Liao Q, He Y, Li R, Striegel A, Su Z. SAVE:Sensor anomaly visualization engine. In:Proc. of the IEEE Conf. on Visual Analytics Science and Technology. 2011. 201-210.[doi:10.1109/VAST.2011.6102458]
    [17] Zhou F, Huang W, Zhao Y, Shi Y, Liang X, Fan X. ENTVis:A visual analytic tool for entropy-based network traffic anomaly detection. IEEE Computer Graphs and Applications, 2015,35(6):42-50.[doi:10.1109/MCG.2015.97]
    [18] Artero AO, De Oliveira MCF. Viz3D:Effective exploratory visualization of large multidimensional data sets. In:Proc. of the XVII Brazilian Symp. on Computer Graphics and Image. 2004. 340-347.[doi:10.1109/SIBGRA.2004.1352979]
    [19] Nováková L, Stepankova O. Radviz and identification of clusters in multidimensional data. In:Proc. of the IEEE 17th Int'l Conf. on Information Visualization. 2009. 104-109.[doi:10.1109/IV.2009.103]
    [20] Caro LD, Frias-Martinez V, Frias-Martinez E. Analyzing the role of dimension arrangement for data visualization in Radviz. In:Advances in Knowledge Discovery and Data Mining. 2010. 125-132.[doi:10.1007/978-3-642-13672-6_13]
    [21] Gee AG, Yu M, Grinstein GG. Dynamic and interactive dimensional anchors for spring-based visualizations. Technical Report, Computer Science, University of Massachussetts Lowell, 2005.
    [22] Kuntal BK, Ghosh TS, Mande SS. Igloo-Plot:A tool for visualization of multidimensional datasets. Genomics, 2014,103(1):11-20.[doi:10.1016/j.ygeno.2014.01.004]
    [23] Cheng SH, Mueller K. Improving the fidelity of contextual data layouts using a generalized barycentric coordinates framework. In:Proc. of the IEEE Conf. on Pacific Visualization. 2015.[doi:10.1109/PACIFICVIS.2015.7156390]
    [24] Comaniciu D, Meer P. Mean shift:A robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(5):603-619.[doi:10.1109/34.1000236]
    [25] Zhou FF, Zhao Y, Ma KL. Parallel mean shift for interactive volume segmentation. In:Proc. of the MLMI 2010. LNCS 6357, Berlin, Heidelberg:Springer-Verlag, 2010, 67-75.[doi:10.1007/978-3-642-15948-0_9]
    [26] Peng NS, Yang J, Liu Z, Zhang CF. Automatic selection of kernel function window width in mean-shift tracking algorithm. Ruan Jian Xue Bao/Journal of Software, 2005,16(9):1542-1550(in Chinese with English abstract). http://www.jos.org.cn/ch/reader/create_pdf.aspx?file_no=20050903&journal_id=jos[doi:10.1360/jos161542]
    [27] Dunn JC. Well-Separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 1974,4(1):95-104.[doi:10.1080/01969727408546059]
    [28] Machine Learning Repository. 2014. http://archive.ics.uci.edu/ml/
    [29] Chen Y, Zhang XY, Feng YH, Liang J, Chen HQ. Sunburst with ordered nodes based on hierarchical clustering:A visual analyzing method for associated hierarchical pesticide residue data. Journal of Visualization, 2015,18(2):237-254.[doi:10.1007/s12650-014-0269-3]
    [30] Wu YD, Wang S, Wang HY, Li QS, Jiang HY, Zou YG. A total variation-based hierarchical radial video visualization method. Journal of Visualization, 2015,18(2):255-267.[doi:10.1007/s12650-014-0266-6]
    [31] Manuel R, Laura R, Francisco D, Alberto S. A comparative study between Radviz and Star Coordinates. IEEE Trans on Visualization and Computer Graphics, 2016,22(1):619-628.[doi:10.1109/TVCG.2015.2467324]
    附中文参考文献:
    [10] 孙扬,唐九阳,汤大权,肖卫东.改进的多变元数据可视化方法.软件学报,2010,21(6):1462-1472. http://www.jos.org.cn/1000-9825/3460.htm[doi:10.3724/SP.J.1001.2010.03460]
    [15] 徐永红,洪文学,陈铭明.基于Radviz及其优化的可视化故障诊断方法.计算机应用研究,2009,26(3):840-842.
    [26] 彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取.软件学报,2005,16(9):1542-1550. http://www.jos.org.cn/ch/reader/create_pdf.aspx?file_no=20050903&journal_id=jos[doi:10.1360/jos161542]
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周芳芳,李俊材,黄伟,王俊韡,赵颖.基于维度扩展的Radviz可视化聚类分析方法.软件学报,2016,27(5):1127-1139

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-05-26
  • 最后修改日期:2015-11-09
  • 在线发布日期: 2016-05-06
文章二维码
您是第19894721位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号