微博信息传播预测研究综述
作者:
基金项目:

国家重点基础研究发展计划(973)(2014CB340503); 国家自然科学基金(61472107, 61202277)


Survey on Predicting Information Propagation in Microblogs
Author:
Fund Project:

National Program on Key Basic Research Project (973) (2014CB340503); National Natural Science Foundation of China (61472107, 61202277)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [93]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    微博已经逐渐成为人们获取信息、分享信息的重要社会媒体,深刻影响并改变了信息的传播方式.针对微博信息传播预测问题展开综述.该研究对舆情监控、微博营销、个性化推荐具有重要意义.首先概述微博信息传播过程,通过介绍微博信息传播的定性研究工作,揭示微博信息传播的特点;接着,从以信息为中心、以用户为中心以及以信息和用户为中心这3个角度介绍微博信息传播预测相关研究工作,对应的主要研究任务分别是微博信息流行度预测、用户传播行为预测和微博信息传播路径预测;继而介绍可用于微博信息传播预测研究的公开数据资源;最后,展望微博信息传播预测研究的问题与挑战.

    Abstract:

    Microblogs have gradually become popular platforms for users to acquire and share information with the public, which have brought a profound impact on information propagation. This paper presents a survey of predicting information propagation in microblogs. It is important to public opinion monitoring, online marketing and personalized recommendation. The paper first introduces the mechanism of information propagation, and reveals the characteristics of information propagation in microblogs through a brief overview of the qualitative research. Then, representative work is reviewed for the prediction of information propagation from three aspects including information centered prediction, user centered prediction and information-user centered prediction. The three corresponding tasks are predicting the popularity of information, predicting individual spread behaviors and predicting the path of information dissemination respectively. Next, the publicly available data sets for information propagation in microblogs are summarized. Finally, the key challenges are discussed to suggest the future research directions.

    参考文献
    [1] Java A, Song XD, Finin T, Tseng B. Why we Twitter: Understanding micro-blogging usage and communities. In: Zhang HZ, et al., eds. Proc. of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis. New York: ACM Press, 2007. 56-65. [doi: 10.1145/1348549.1348556]
    [2] Zafarani R, Abbasi MA, Liu H. Social Media Mining: An Introduction. New York: Cambridge University Press, 2014. 197-198.
    [3] Zhao D, Rosson MB. How and why people Twitter: The role that micro-blogging plays in informal communication at work. In: Teasley S, Havn E, eds. Proc. of the GROUP 2009. New York: ACM Press, 2009. 243-252. [doi: 10.1145/1531674.1531710]
    [4] Huberman BA, Romero DM, Wu F. Social networks that matter: Twitter under the microscope. First Monday, 2009,14(1):1-9.
    [5] Gao S, Ma J, Chen ZM. Modeling and predicting retweeting dynamics on microblogging platforms. In: Cheng XQ, Li H, eds. Proc. of the WSDM 2015. New York: ACM Press, 2015. 107-116. [doi: 10.1145/2684822.2685303]
    [6] Zaman TR, Herbrich R, Gael JV, Stern D. Predicting information spreading in Twitter. In: Proc. of the NIPS Workshop on Computational Social Science and the Wisdom of Crowds. New York: ACM Press, 2010. 17599-17601.
    [7] Feng W, Wang J. Retweet or not? Personalized tweet re-ranking. In: Leonardi S, Panconesi A, eds. Proc. of the WSDM 2013. New York: ACM Press, 2013. 577-586. [doi: 10.1145/2433396.2433470]
    [8] Liu T, Ding X, Zhao SD, Duan JW. Prediction technology based on social media. Communications of the CCF, 2015,11(3):26-33. (in Chinese).
    [9] Li D, Xu ZM, Li S, Liu T, Wang XW. A survey on information diffusion in social networks. Chinese Journal of Computers, 2014, 37(1):189-206 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2014.00189]
    [10] Szabo G, Huberman BA. Predicting the popularity of online content. Communications of the ACM, 2010,53(8):80-88. [doi: 10.1145/1787234.1787254]
    [11] Lerman K, Hogg T. Using a model of social dynamics to predict popularity of news. In: Rappa M, Jones P, eds. Proc. of the WWW 2010. New York: ACM Press, 2010. 621-630. [doi: 10.1145/1772690.1772754]
    [12] Leskovec J, Mcglohon M, Faloutsos C, Glance N, Hurst M. Patterns of cascading behavior in large blog graphs. In: Proc. of the SDM 2007. Philadelphia: SIAM, 2007. 551-556. [doi: 10.1137/1.9781611972771.60]
    [13] Webberley W, Allen S, Whitaker R. Retweeting: A study of message-forwarding in Twitter. In: Proc. of the Workshop on Mobile and Online Social Networks (MOSN 2011). Washington: IEEE Computer Society, 2011. 13-18. [doi: 10.1109/MOSN.2011.60607 87]
    [14] Kwak H, Lee C, Park H, Moon S. What is Twitter, a social network or a news media? In: Rappa M, Jones P, eds. Proc. of the WWW 2010. New York: ACM Press, 2010. 591-600. [doi: 10.1145/1772690.1772751]
    [15] Honey C, Herring SC. Beyond microblogging: Conversation and collaboration via Twitter. In: Proc. of the 2nd Hawaii Int'l Conf. on System Sciences (HICSS 2009). Washington: IEEE Computer Society, 2009. 1-10. [doi: 10.1109/HICSS.2009.89]
    [16] Yu L, Asur S, Huberman BA. What trends in Chinese social media. arXiv:1107.3522, 2011.
    [17] Petrovic S, Osborne M, Mccreadie R, Macdonald C, Ounis I, Shrimpton L. Can Twitter replace newswire for breaking news? In: Proc. of the ICWSM 2013. Menlo Park: AAAI Press, 2013. 713-716.
    [18] Subasic L, Berendt B. Peddling or creating? Investigating the role of Twitter in news reporting. In: Clough P, et al., eds. Proc. of the ECIR 2011. Berlin, Heidelberg: Springer-Verlag, 2011. 207-213. [doi: 10.1007/978-3-642-20161-5_21]
    [19] Zhao WX, Jiang J, Weng J, He J, Lim EP, Yan HF, Li XM. Comparing Twitter and traditional media using topic models. In: Clough P, et al., eds. Proc. of the ECIR 2011. Berlin, Heidelberg: Springer-Verlag, 2011. 338-349. [doi: 10.1007/978-3-642-201 61-5_34]
    [20] Starbird K, Palen L. Pass it on?: Retweeting in mass emergency. In: Proc. of the Conf. on Information Systems for Crisis Response and Management. 2010.
    [21] Vieweg S, Hughes AL, Starbird K, Palen L. Microblogging during two natural hazards events: What twitter may contribute to situational awareness. In: Mynatt E, ed. Proc. of the CHI 2010. New York: ACM Press, 2010. 1079-1088. [doi: 10.1145/1753326. 1753486]
    [22] Starbird K, Palen L, Hughes AL, Vieweg S. Chatter on the red: What hazards threat reveals about the social life of microblogged information. In: Inkpen K, Gutwin C, eds. Proc. of the CSCW 2010. New York: ACM Press, 2010. 241-250. [doi: 10.1145/171891 8.1718965]
    [23] Qu Y, Huang C, Zhang PY, Zhang, J. Microblogging after a major disaster in China: A case study of the 2010 Yushu earthquake. In: Chairs G, Tang JC, Wang J, eds. Proc. of the CSCW 2011. New York: ACM Press, 2011. 25-34. [doi: 10.1145/1958824.1958830]
    [24] Yi CQ, Bao YY, Xue YB, Jiang JC. Research on mechanism of large-scale information dissemination based on sina Weibo. Journal of Frontiers of Computer Science and Technology, 2013,7(6):551-561 (in Chinese with English abstract).
    [25] Lerman K, Ghosh R. Information contagion: An empirical study of the spread of news on digg and Twitter social networks. In: Proc. of the ICWSM 2010. Menlo Park: AAAI Press, 2010. 90-97.
    [26] Guo ZB, Li ZT, Tu H. Sina microblog: An information-driven online social network. In: Proc. of the 2011 Int'l Conf. on Cyberworlds (CW). Washington: IEEE Computer Society, 2011. 160-167. [doi: 10.1109/CW.2011.12]
    [27] He XN, Gao M, Kan M Y, Liu YQ, Sugiyama K. Predicting the popularity of Web 2.0 items based on user comments. In: Chairs G, Trotman A, eds. Proc. of the SIGIR 2014. New York: ACM Press, 2014. 233-242. [doi: 10.1145/2600428.2609558]
    [28] Figueiredo F, Benevenuto F, Almeida JM. The tube over time: characterizing popularity growth of youtube videos. In: King I, ed. Proc. of the WSDM 2011. New York: ACM Press, 2011. 745-754. [doi: 10.1145/1935826.1935925]
    [29] Kong QC, Mao WJ. Predicting popularity of forum threads based on dynamic evolution. Ruan Jian Xue Bao/Journal of Software, 2014,25(12):2767-2776 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4730.htm [doi: 10.13328/j.cnki.jos. 004730]
    [30] Suh B, Hong LC, Pirolli P, Chi EH. Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network. In: Proc. of the Social Computing (SocialCom 2010). Washington: IEEE Computer Society, 2010. 177-184. [doi: 10.1109/Social Com.2010.33]
    [31] Artzi Y, Pantel P, Gamon M. Predicting responses to microblog posts. In: Chu-Carroll J, ed. Proc. of the NAACL 2012. Stroudsburg: Association for Computational Linguistics, 2012. 602-606.
    [32] Kupavskii A, Umnov A, Gusev G, Serdyukov P. Predicting the audience size of a Tweet. In: Proc. of the ICWSM 2013. Menlo Park: AAAI Press, 2013. 693-696.
    [33] Ma HX, Qian WN, Xia F, He XF, Xu J, Zhou AY. Towards modeling popularity of microblogs. Frontiers of Computer Science, 2013,7(2):171-184. [doi: 10.1007/s11704-013-3901-9]
    [34] Yang J, Counts S. Predicting the speed, scale, and range of information diffusion in Twitter. In: Proc. of the ICWSM 2010. Menlo Park: AAAI Press, 2010. 355-358.
    [35] Kong S, Feng L, Sun G, Luo K. Predicting lifespans of popular tweets in microblog. In: Hersh W, ed. Proc. of the SIGIR 2012. New York: ACM Press, 2012. 1129-1130. [doi: 10.1145/2348283.2348503]
    [36] Bhattacharya D, Ram S. Sharing news articles using 140 characters: A diffusion analysis on Twitter. In: Proc. of the ASONAM 2012. Washington: IEEE Computer Society, 2012. 966-971. [doi: 10.1109/ASONAM.2012.170]
    [37] Liu DC, Chen X. Rumor propagation in online social networks like Twitter—A simulation study. In: Proc. of the 3rd Int'l Conf. on Multimedia Information Networking and Security (MINES). Washington: IEEE Computer Society, 2011. 278-282. [doi: 10.1109/MINES.2011.109]
    [38] Xu XD, Xiao YT, Zhu SR. Simulation investigation of rumor propagation in microblogging community. Computer Engineering, 2011,37(10):272-274 (in Chinese with English abstract).
    [39] Wang H, Li YP, Feng ZN, Feng L. ReTweeting analysis and prediction in microblogs: An epidemic inspired approach. China Communications, 2013,10(3):13-24. [doi: 10.1109/CC.2013.6488827]
    [40] Xiong F, Liu Y, Zhang ZJ, Zhu J, Zhang Y. An information diffusion model based on retweeting mechanism for online social media. Physics Letters A, 2012,376(30-31):2103-2108. [doi: 10.1016/j.physleta.2012.05.021]
    [41] Wu M, Guo J, Zhang C, Xie JJ. Social media communication model research bases on Sina-Weibo. In: Proc. of the 6th Int'l Conf. on Intelligent Systems and Knowledge Engineering. Berlin, Heidelberg: Springer-Verlag, 2011. 445-454. [doi: 10.1007/978-3-642- 25661-5_57]
    [42] Yang J, Leskovec J. Modeling information diffusion in implicit networks. In: Proc. of the ICDM 2010. Washington: IEEE Computer Society, 2010. 599-608. [doi: 10.1109/ICDM.2010.22]
    [43] Hong LJ, Dan O, Davison BD. Predicting popular messages in Twitter. In: Sadagopan S, Ramamritham K, Kumar A, Ravindra MP, eds. Proc. of the WWW 2011 Companion. New York: ACM Press, 2011. 57-58. [doi: 10.1145/1963192.1963222]
    [44] Gao S, Ma J, Chen ZM. Popularity prediction in microblogging network. In: Chen L, et al., eds. Proc. of the 16th Asia-Pacific Web Conf. Berlin, Heidelberg: Springer-Verlag, 2014. 379-390. [doi: 10.1007/978-3-319-11116-2_33]
    [45] Kupavskii A, Ostroumova L, Umnov A, Usachev S, Serdyukov P, Gusev G, Kustarev A. Prediction of retweet cascade size over time. In: Chen XW, ed. Proc. of the CIKM 2012. New York: ACM Press, 2012. 2335-2338. [doi: 10.1145/2396761.2398634]
    [46] Bakshy E, Hofman JM, Mason WA, WattsDJ. Everyone's an influencer: Quantifying influence on Twitter. In: King I, ed. Proc. of the WSDM 2011. New York: ACM Press, 2011. 65-74. [doi: 10.1145/1935826.1935845]
    [47] Anagnostopoulos A, Kumar R, Mahdian M. Influence and correlation in social networks. In: Li Y, ed. Proc. of the SIGKDD 2008. New York: ACM Press, 2018. 7-15. [doi: 10.1145/1401890.1401897]
    [48] Zhang S, Xu K, Li HT. Measurement and analysis of information propagation in online social networks like microblog. Journal of Xi'an Jiaotong University, 2013,47(2):124-130 (in Chinese with English abstract). [doi: 10.7652/xjtuxb201302021]
    [49] Mao JX, Liu YQ, Zhang M, Ma SP. Social influence analysis for micro-blog user based on user behavior. Chinese Journal of Computers, 2014,37(4):791-798 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2014.00791]
    [50] Gao S, Ma J, Chen ZM. Effective and effortless features for popularity prediction in microblogging network. In: Chung CW, ed. Proc. of the WWW Companion 2014. New York: ACM Press, 2014. 269-270. [doi: 10.1145/2567948.2577312]
    [51] Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: Bringing order to the Web. Technical Report, No.1999-66, Stanford InfoLab, 1999.
    [52] Weng JS, Lim EP, Jiang J, He Q. Twitterrank: Finding topic-sensitive influential twitterers. In: Davison BD, Suel T, eds. Proc. of the WSDM 2010. New York: ACM Press, 2010. 261-270. [doi: 10.1145/1718487.1718520]
    [53] Wu S, Tan C, Kleinberg JM, Macy MW. Does bad news go away faster? In: Proc. of the ICWSM 2011. Menlo Park: AAAI Press, 2011.
    [54] Ma ZY, Sun AX, Cong G. On predicting the popularity of newly emerging hashtags in Twitter. Journal of the American Society for Information Science and Technology, 2013,64(7):1399-1410. [doi: 10.1002/asi.22844]
    [55] Tsur O, Rappoport A. What's in a hashtag? Content based prediction of the spread of ideas in microblogging communities. In: Adar E, Teevan J, eds. Proc. of the WSDM 2012. New York: ACM Press, 2012. 643-652. [doi: 10.1145/2124295.2124320]
    [56] Jenders M, Kasneci G, Naumann F. Analyzing and predicting viral tweets. In: Schwabe D, Almeida V, Glaser H, eds. Proc. of the WWW 2013 Companion. New York: ACM Press, 2013. 657-664.
    [57] Tan CH, Lee L, Pang B. The effect of wording on message propagation: Topic- and author-controlled natural experiments on Twitter. In: Marcu D, ed. Proc. of the ACL 2014. Baltimore: Association for Computational Linguistics, 2014. 175-185.
    [58] Zhao X, Zhu FD, Qian WN, Zhou AY. Impact of multimedia in Sina Weibo: Popularity and life span. In: Proc. of the Semantic Web and Web Science. Springer-Verlag, 2013. 55-65. [doi: 10.1007/978-1-4614-6880-6_5]
    [59] Can EF, Oktay H, Manmatha R. Predicting retweet count using visual cues. In: He Q, Iyengar A, eds. Proc. of the CIKM 2013. New York: ACM Press, 2013. 1481-1484. [doi: 10.1145/2505515.2507824]
    [60] Bae Y, Ryu P, Kim H. Predicting the lifespan and retweet times of tweets based on multiple feature analysis. ETRI Journal, 2014, 36(3):418-428. [doi: 10.4218/etrij.14.0113.0657]
    [61] Liu GN, Fu YJ, Xu T, Xiong H, Chen GQ. Discovering temporal retweeting patterns for social media marketing campaigns. In: Fan JP, Pei J, eds. Proc. of the ICDM 2014. Washington: IEEE Computer Society, 2014. 905-910. [doi: 10.1109/ICDM.2014.48]
    [62] Bao P, Shen HW, Huang JM, Cheng XQ. Popularity prediction in microblogging network: A case study on Sina Weibo. In: Schwabe D, Almeida V, Glaser H, eds. Proc. of the WWW 2013 Companion. New York: ACM Press, 2013. 177-178.
    [63] Zaman T, Fox EB, Bradlow ET. A Bayesian approach for predicting the popularity of tweets. arXiv:1304.6777v3, 2014. [doi: 10.12 14/14-AOAS741]
    [64] Lu R, Yang Q. Trend analysis of news topics on Twitter. In: Proc. of the ICWSM 2012. Menlo Park: AAAI Press, 2012. 327-332.
    [65] Xu Z, Yang Q. Analyzing user retweet behavior on Twitter. In: Proc. of the ASONAM 2012. Washington: IEEE Computer Society, 2012. 46-50. [doi: 10.1109/ASONAM.2012.18]
    [66] Xu ZH, Zhang Y, Wu Y, Yang Q. Modeling user posting behavior on social media. In: Hersh W, ed. Proc. of the SIGIR 2012. New York: ACM Press, 2012. 545-554. [doi: 10.1145/2348283.2348358]
    [67] Boyd D, Golder S, Lotan G. Tweet, tweet, retweet: Conversational aspects of retweeting on Twitter. In: Proc. of the 3rd Hawaii Int'l Conf. on System Sciences (HICSS 2010). Washington: IEEE Computer Society, 2010. 1-10. [doi: 10.1109/HICSS.2010.412]
    [68] Chen KL, Chen TQ, Zheng GQ, Ou J, Yao EP, Yu Y. Collaborative personalized tweet recommendation. In: Hersh W, ed. Proc. of the SIGIR 2012. New York: ACM Press, 2012. 661-670. [doi: 10.1145/2348283.2348372]
    [69] Pan Y, Cong F, Chen K, Yu Y. Diffusion-Aware personalized social update recommendation. In: Yang Q, King I, Li Q, eds. Proc. of the 7th ACM Conf. on Recommender Systems. New York: ACM Press, 2013. 69-76. [doi: 10.1145/2507157.2507177]
    [70] Hong LJ, Doumith AS, Davison BD. Co-Factorization machines: Modeling user interests and predicting individual decisions in Twitter. In: Leonardi S, Panconesi A, eds. Proc. of the WSDM 2013. New York: ACM Press, 2013. 557-566. [doi: 10.1145/243339 6.2433467]
    [71] Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. Journal of Machine Learning Research, 2003,3:993-1022.
    [72] Zhang Q, Gong Y, Guo Y, Huang XJ. Retweet behavior prediction using hierarchical dirichlet process. In: Proc. of the AAAI 2015. Menlo Park: AAAI Press, 2015.
    [73] Teh YW, Jordan MI, Beal MJ, Blei DM. Hierarchical dirichlet processes. Journal of the American Statistical Association, 2006, 101(476):1566-1581. [doi: 10.1198/016214506000000302]
    [74] Zhang J, Liu B, Tang J, Chen T, Li JZ. Social influence locality for modeling retweeting behaviors. In: Rossi F, ed. Proc. of the IJCAI 2013. Menlo Park: AAAI Press, 2013. 2761-2767.
    [75] Yang Z. Predictive models in social network analysis [MS. Thesis] . Beijing: Tsinghua University, 2011 (in Chinese with English abstract).
    [76] Tang J, Sun J, Wang C, Yang Z. Social influence analysis in large-scale networks. In: Elder J, Fogelman FS, eds. Proc. of the SIGKDD 2009. New York: ACM Press, 2009. 807-816. [doi: 10.1145/1557019.1557108]
    [77] Tan C, Tang J, Sun J, Lin Q, Wang FJ. Social action tracking via noise tolerant time-varying factor graphs. In: Rao B, Krishnapuram B, eds. Proc. of the SIGKDD 2010. New York: ACM Press, 2010. 1049-1058. [doi: 10.1145/1835804.1835936]
    [78] Bian J, Yang Y, Chua TS. Predicting trending messages and diffusion participants in microblogging network. In: Geva S, Trotman A, eds. Proc. of the SIGIR 2014. New York: ACM Press, 2014. 537-546. [doi: 10.1145/2600428.2609616]
    [79] Hoang TA, Lim EP. Retweeting: An act of viral users, susceptible users, or viral topics? In: Proc. of the SDM 2013. Philadelphia: SIAM, 2013. 569-577.
    [80] Song GH, Li ZT, Tu H. Forward or ignore: User behavior analysis and prediction on microblogging. In: Proc. of the Advanced Research in Applied Artificial Intelligence. Berlin, Heidelberg: Springer-Verlag, 2012. 231-241. [doi: 10.1007/978-3-642-31087- 4_25]
    [81] Luo ZC, Osborne M, Tang JT, Wang T. Who will retweet me? Finding retweeters in Twitter. In: Jones G, Sheridan P, eds. Proc. of the SIGIR 2013. New York: ACM Press, 2013. 869-872. [doi: 10.1145/2484028.2484158]
    [82] Li H. Learning to rank for information retrieval and natural language processing. Synthesis Lectures on Human Language Technologies, 2011,4(1):1-113. [doi: 10.2200/S00348ED1V01Y201104HLT012]
    [83] Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network. In: Proc. of the SIGKDD 2003. New York: ACM Press, 2003. 137-146. [doi: 10.1145/956750.956769]
    [84] Young HP. The diffusion of innovations in social networks. In: Proc. of the Economy as an Evolving Complex System III: Current Perspectives and Future Directions. Oxford University Press, 2006. 267-282.
    [85] Zhu X, Jia Y, Nie YP, Qu M. Event propagation analysis on microblog. Journal of Computer Research and Development, 2015, 52(2):437-444 (in Chinese with English abstract).
    [86] Dickens L, Molloy I, Lobo J, Cheng PC, Russo A. Learning stochastic models of information flow. In: Proc. of the ICDE 2012. Washington: IEEE Computer Society, 2012. 570-581. [doi: 10.1109/ICDE.2012.103]
    [87] Guille A, Hacid H. A predictive model for the temporal dynamics of information diffusion in online social networks. In: Mille A, Gandon F, Misselis J, eds. Proc. of the WWW 2012 Companion. New York: ACM Press, 2012. 1145-1152. [doi: 10.1145/2187980. 2188254]
    [88] Galuba W, Aberer K, Chakraborty D, Despotovic Z, Kellerer W. Outtweeting the twitterers-predicting information cascades in microblogs. In: Proc. of the 3rd Wonference on Online Social Networks. Berkeley: USENIX Association, 2010.
    [89] Zheng L. The research on information diffusion modeling over social networks [MS. Thesis] . Shanghai: Shanghai Jiaotong University, 2011 (in Chinese with English abstract).
    [90] Cao JX, Wu JL, Shi W, Liu B, Zheng X, Luo JZ. Sina Weibo information diffusion analysis and prediction. Chinese Journal of Computers, 2014,37(4):779-790 (in Chinese with English abstract).
    [91] Yang Z, Guo JY, Cai KK, Tang JZ, Li J, Zhang L, Su Z. Understanding retweeting behaviors in social networks. In: Huang J, ed. Proc. of the CIKM 2010. New York: ACM Press, 2010. 1633-1636. [doi: 10.1145/1871437.1871691]
    [92] Montanari A, Saberi A. The spread of innovations in social networks. Proc. of the National Academy of Sciences, 2010,107(47): 20196-20201. [doi: 10.1073/pnas.1004098107]
    [93] Yang J, Leskovec J. Patterns of temporal variation in online media. In: King I, ed. Proc. of the WSDM 2011. New York: ACM Press, 2011. 177-186. [doi: 10.1145/1935826.1935863]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李洋,陈毅恒,刘挺.微博信息传播预测研究综述.软件学报,2016,27(2):247-263

复制
分享
文章指标
  • 点击次数:7656
  • 下载次数: 17466
  • HTML阅读次数: 5509
  • 引用次数: 0
历史
  • 收稿日期:2015-05-08
  • 最后修改日期:2015-10-17
  • 在线发布日期: 2016-02-03
文章二维码
您是第20240981位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号