机载网络体系结构及其协议栈研究进展
作者:
基金项目:

国家高技术研究发展计划(863)(2015AA015603); 江苏省未来网络创新研究院未来网络前瞻性研究项目(BY2013095-5-03); 江苏省"六大人才高峰"高层次人才项目(2011-DZ024)


Research Progress on Architecture and Protocol Stack of the Airborne Network
Author:
Fund Project:

National High-tech R&D Program of China (863 Program) (2015AA015603); Jiangsu Future Networks Innovation Institute: Prospective Research Project on Future Networks (BY2013095-5-03); Six Talent Peaks of High Level Talents Project of Jiangsu Province (2011-DZ024)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [70]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着空中任务的不断增加,尤其是无人机的迅速发展,机载通信需求的快速增长促使机载通信向网络化的方向不断发展.作为连接卫星网络和地面网络的空中通信重要枢纽,机载网络具有诸多区别于无线移动网络的新特征,包括大尺度三维稀疏分布场景、长传输范围、移动轨迹可预测、高速移动、高动态拓扑和分群结构等.这也使得其在体系结构和协议栈设计上面临新的挑战,成为学术界和产业界的研究热点.首先,对机载网络体系结构和网络特征作了介绍;进而,重点对MAC协议、路由协议和传输控制协议3个方面的研究进展进行了系统的综述;最后,讨论了机载网络研究存在的一些问题和需要进一步研究的方向.

    Abstract:

    The increase in air missions, coupled with the rapid developing of unmanned aerial vehicles, promotes the development in network oriented airborne communication. As an important hub to connect the air communication satellite networks and terrestrial networks, airborne network has many new features (which are different from the wireless mobile network), such as large-scale three-dimensional distribution sparse scene, long transmission ranges, mobile predictable trajectory, high-speed mobile, high dynamic topology, and clustering structure. Meanwhile, it faces new challenges in its architecture and protocol stack design, thus becomes a hot topic in academia and industry. In this paper, the architecture and characteristics of airborne network are first introduced. Then a systematic summary is provided on the research progress of three important topics: medium access control protocols, routing protocols and transmission control protocols. Finally, problems in current research and future research directions of this area are discussed.

    参考文献
    [1] Kwak K, Sagduyu Y, Yackoski J, Azimi-Sadjadi B, Namazi A, Deng J, Li J. Airborne network evaluation:Challenges and high fidelity emulation solution. IEEE Communications Magazine, 2014,52(10):30-36.[doi:10.1109/MCOM.2014.6917398]
    [2] Sakhaee E, Jamalipour A, Kato N. Aeronautical ad hoc networks. In:Proc. of the IEEE Wireless Communications and Networking Conf. (WCNC). Las Vegas:IEEE, 2006. 246-251.[doi:10.1109/WCNC.2006.1683472]
    [3] Bekmezci I, Sahingoz OK, Temel Ş. Flying ad-hoc networks (FANETs):A survey. Ad Hoc Networks, 2013,11(3):1254-1270.[doi:10.1016/j.adhoc.2012.12.004]
    [4] Maza I, Caballero F, Capitán J, Dios JR, Ollero A. Experimental results in multi-UAV coordination for disaster management and civil security applications. Journal of Intelligent & Robotic Systems, 2011,61(1-4):563-585.[doi:10.1007/s10846-010-9497-5]
    [5] Zaouche L, Natalizio E, Bouabdallah A. ETTAF:Efficient target tracking and filming with a flying ad hoc network. In:Proc. of the 1st Int'l Workshop on Experiences with the Design and Implementation of Smart Objects. New York:ACM Press, 2015. 49-54.[doi:10.1145/2797044.2797055]
    [6] Schnell M, Epple U, Shutin D, Schneckenburger N. LDACS:Future aeronautical communications for air-traffic management. IEEE Communications Magazine, 2014,52(5):104-110.[doi:10.1109/MCOM.2014.6815900]
    [7] Barrado C, Messeguer R, López J, Pastor E, Santamaria E, Royo P. Wildfire monitoring using a mixed air-ground mobile network. IEEE Trans. on Pervasive Computing, 2010,9(4):24-32.[doi:10.1109/MPRV.2010.54]
    [8] Cho A, Kim J, Lee S, Kee C. Wind estimation and airspeed calibration using a UAV with a single-antenna GPS receiver and pitot tube. IEEE Trans. on Aerospace and Electronic Systems, 2011,47(1):109-117.[doi:10.1109/TAES.2011.5705663]
    [9] Yanmaz E, Kuschnig R, Bettstetter C. Achieving air-ground communications in 802.11 networks with three-dimensional aerial mobility. In:Proc. of the IEEE INFOCOM. Turin:IEEE, 2013. 120-124.[doi:10.1109/INFCOM.2013.6566747]
    [10] Abdulla AE, Md Fadlullah Z, Nishiyama H, Kato N, Ono F, Miura R. An optimal data collection technique for improved utility in UAS-aided networks. In:Proc. of the IEEE INFOCOM. Toronto:IEEE, 2014. 736-744.[doi:10.1109/INFOCOM.2014.6848000]
    [11] Ben-Asher Y, Feldman S, Gurfil P, Feldman M. Distributed decision and control for cooperative UAVs using ad hoc communication. IEEE Trans. on Control Systems Technology, 2008,16(3):511-516.[doi:10.1109/TCST.2007.906314]
    [12] Ren FY, Huang HN, Lin C. Wireless sensor networks. Ruan Jian Xue Bao/Journal of Software, 2003,14(7):1282-1291(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/14/1282.htm
    [13] Chen LJ, Jiang H, Wu J, Guo CC, Xu WP, Yan PL. Research on transmission control on vehicle ad-hoc network. Ruan Jian Xue Bao/Journal of Software, 2007,18(6):1477-1490(in Chinese with English abstract). http://www.jos.org/1000-9825/18/1477.htm
    [14] Lu Y, Zhao YJ, Sun FC, Li HB, Ni GQ, Wang DJ. Routing techniques on satellite networks. Ruan Jian Xue Bao/Journal of Software, 2014,25(5):1085-1100(in Chinese with English abstract). http://www.jos.org/1000-9825/4581.htm[doi:10.13328/j.cnki. jos.004581]
    [15] Mario G, Kaixin X. Minuteman:Forward projection of unmanned agents using the airborne Internet. In:Proc. of the IEEE Aerospace Conf. Big Sky:IEEE Press, 2002. 2715-2725.[doi:10.1109/AERO.2002.1036112]
    [16] Rockwell C. The TTNT project. 2001. https://www.rockwellcollins.com/Data/Products/Communications_and_Networks/Networks/Tactical_Targeting_Network_Technology.aspx
    [17] Herder JC, Stevens JA. Method and architecture for TTNT symbol rate scaling modes. Int'l Cl:H04J3/22 US Pat 7839900 B1. 2010.
    [18] Sakhaee E, Jamalipour A. The global in-flight Internet. IEEE Journal on Selected Areas in Communications, 2006,24(9):1748-1757.[doi:10.1109/JSAC.2006.875122]
    [19] Amirfeiz M. The ATENAA project. 2006. http://cordis.europa.eu/result/rcn/47576_en.html
    [20] Schnell M, Scalise S. Newsky-Concept for networking the sky for civil aeronautical communications. IEEE Aerospace and Electronic Systems Magazine, 2007,22(5):25-29.[doi:10.1109/MAES.2007.365331]
    [21] Kou MY, Zhao R. Modern Aeronautical Communications Technology. Beijing:National Defense Industry Press, 2011(in Chinese).
    [22] Ceng HY, Tian YC. Tactical Wireless Communications and Networks-Design Concepts and Challenges. Beijing:National Defense Industry Press, 2014(in Chinese).
    [23] Cheng BN, Block FJ, Hamilton BR, Ripplinger D, Timmerman C, Veytser L, Narula-Tam A. Design considerations for nextgeneration airborne tactical networks. IEEE Communications Magazine, 2014,52(5):138-145.[doi:10.1109/MCOM.2014.6815904]
    [24] Sahingoz OK. Networking models in flying ad-hoc networks (FANETs):Concepts and challenges. Journal of Intelligent & Robotic Systems, 2014,74(1-2):513-527.[doi:10.1007/s10846-013-9959-7]
    [25] Zheng B, Zhang HY, Huang GC, Ren QH. Satus and development of aeronautical ad hoc networks. Telecommunications Science, 2011,27(5):38-47(in Chinese with English abstract).
    [26] Wu WQ, Zheng S, Zhang QY. Research on high dynamic high altitude platforms network oriented routing protocol. Journal on Communications, 2012,1:022(in Chinese with English abstract).
    [27] Cheng BN, Charland R, Christensen P, Veytser L, Wheeler J. Evaluation of a multihop airborne IP backbone with heterogeneous radio technologies. IEEE Trans. on Mobile Computing, 2014,13(2):299-310.[doi:10.1109/TMC.2012.250]
    [28] Cheng BN, Coyle A, Mc Garry S, Pedan I, Veytser L, Wheeler J. Characterizing routing with radio-to-router information in a heterogeneous airborne network. IEEE Trans. on Wireless Communications, 2013,12(8):4183-4195.[doi:10.1109/TWC.2013.052613.130019]
    [29] Bazan O, Muhammad J. A survey on MAC protocols for wireless ad hoc networks with beam forming antennas. IEEE on Communications Surveys & Tutorials, 2012,14(2):216-239.[doi:10.1109/SURV.2011.041311.00099]
    [30] Temel S, Bekmezci I. LODMAC:Location oriented directional MAC protocol for FANETs. Computer Networks, 2015,83:76-85.[doi:10.1016/j.comnet.2015.03.001]
    [31] Wang YQ, Yang F, Huang GC, Zhang HY, Guo JX. Media access control protocol with differential service in aeronautical frequency-hopping ad hoc networks. Ruan Jian Xue Bao/Journal of Software, 2013,24(9):2214-2225(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4335.hm[doi:10.3724/SP.J.1001.2013.04335]
    [32] Alshbatat AI, Dong L. Adaptive MAC protocol for UAV communication networks using directional antennas. In:Proc. of the IEEE Int'l Conf. on Networking, Sensing and Control (ICNSC). 2010. 598-603.[doi:10.1109/ICNSC.2010.5461589]
    [33] Bin C, Linlin C, Minghua Y, Guo T, Tian C. DA-MAC:A duty-cycled, directional adaptive MAC protocol for airborne mobile sensor network. In:Proc. of the IEEE Digital Manufacturing and Automation (ICDMA). 2013. 389-392.[doi:10.1109/ICDMA. 2013.91]
    [34] Li J, Gong E, Sun Z, Li L, Xie H. An interference-based distributed TDMA scheduling algorithm for aeronautical ad hoc networks. In:Proc. of the IEEE Int'l Conf. on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). 2013. 453-460.[doi:10.1109/CyberC.2013.84]
    [35] Jang H, Kim E, Lee JJ, Lim J. Location-Based TDMA MAC for reliable aeronautical communications. IEEE Trans. on Aerospace and Electronic Systems, 2012,48(2):1848-1854.[doi:10.1109/TAES.2012.6178108]
    [36] Kiwior D, Idhaw EG, Pizzi SV. Quality of service (QoS) sensitivity for the OSPF protocol in the airborne networking environment. In:Proc. of the IEEE Military Communications Conf. (MILCOM). Atlantic City:IEEE, 2005. 2366-2372.[doi:10.1109/MILCOM. 2005.1606022]
    [37] Idhaw E, D'Amelia J, Burdin J, Shaio J. Techniques for enabling dynamic routing on airborne platforms. In:Proc. of the IEEE Military Communications Conf. (MILCOM). Boston:IEEE, 2009. 1-9.[doi:10.1109/MILCOM.2009.5379851]
    [38] Cheng BN, Moore S. A comparison of MANET routing protocols on airborne tactical networks. In:Proc. of the IEEE Military Communications Conf. (MILCOM). 2012. 1-6.[doi:10.1109/MILCOM.2012.6415798]
    [39] Kuperman G, Veytser L, Cheng BN, Moore S, Narula-Tam A. A comparison of OLSR and OSPF-MDR for large-scale airborne mobile ad-hoc networks. In:Proc. of the 3rd ACM Workshop on Airborne Networks and Communications. New York:ACM Press, 2014. 17-22.[doi:10.1145/2636582.2637347]
    [40] Kim KI. A simulation study for typical routing protocols in aircraft ad hoc networks. Int'l Journal of Software Engineering & Its Applications, 2013,7(2):227-234.
    [41] Sakhaee E, Jamalipour A, Kato N. Multipath Doppler routing with QoS support in pseudo-linear highly mobile ad hoc networks. In:Proc. of the 6th IEEE Int'l Conf. on Communications (ICC). 2006. 3566-3571.[doi:10.1109/ICC.2006.255625]
    [42] Gu WZ, Li JL, He FJ, Cai FH, Yang FC. A delay-aware stable routing protocol for aeronautical ad hoc networks. Journal of Information& Computational Science, 2012,9(2):347-360.
    [43] Lei L, Wang D, Zhou L, Chen XM, Cai SS. Link availability estimation based reliable routing for aeronautical ad hoc networks. Ad Hoc Networks, 2014,20:53-63.[doi:10.1016/j.adhoc.2014.03.005]
    [44] Hyeon SU, Kim KI, Yang SW. A new geographic routing protocol for aircraft ad hoc networks. In:Proc. of the IEEE Digital Avionics Systems Conf. (DASC). 2010. 2.E.2-1-2.E.2-8.[doi:10.1109/DASC.2010.5655476]
    [45] Zhou Q, Gu WZ, Li JL, Sun QB, Yang FC. A topology aware routing protocol based ADS-B system for aeronautical ad hoc networks. In:Proc. of the 8th IEEE Wireless Communications, Networking and Mobile Computing (WiCOM). Shanghai:IEEE, 2012. 1-4.[doi:10.1109/WiCOM.2012.6478379]
    [46] Rohrer JP, Jabbar A, Cetinkaya EK, Perrins E, Sterbenz JPG. Highly-Dynamic cross-layered aeronautical network architecture. IEEE Trans. on Aerospace and Electronic Systems, 2011,47(4):2742-2765.[doi:10.1109/TAES.2011.6034662]
    [47] Lee CJ, Kang SY, Kim KI. Design of hierarchical routing protocol for heterogeneous airborne ad hoc networks. In:Proc. of the Int'l Conf. on Information Networking (ICOIN). Phuket:IEEE, 2014. 154-159.[doi:10.1109/ICOIN.2014.6799683]
    [48] Gu WZ, Li JL, Zhang H, Sun QB, Yang FC. A cluster-based hybrid routing protocol for aeronautical ad hoc networks. Int'l Journal of Advancements in Computing Technology (IJACT), 2012,4(1):264-271.
    [49] Jonson T, Pezeshki J, Chao V, Smith K, Fazio J. Application of delay tolerant networking (DTN) in airborne networks. In:Proc. of the IEEE Military Communications Conf. (MILCOM). San Diego:IEEE, 2008. 1-7.[doi:10.1109/MILCOM.2008.4753464]
    [50] Wu XY, Chen YW, Xu M, Peng W. TAFR:A TTL-aware message ferry scheme in DTN. In:Proc. of the IEEE Computational and Information Sciences (ICCIS). Chongqing:IEEE, 2012. 1380-1383.[doi:10.1109/ICCIS.2012.309]
    [51] Rosário D, Zhao Z, Braun T, Cerqueira E. Opportunistic routing for multi-flow video dissemination over flying ad-hoc networks. In:Proc. of the IEEE 15th Int'l Symp. on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). Sydney:IEEE, 2014. 1-6.[doi:10.1109/WoWMoM.2014.6918947]
    [52] Su JS, Hu QL, Zhao BK, Peng W. Routing techniques on delay/disruption tolerant networks. Ruan Jian Xue Bao/Journal of Software, 2010,21(1):119-132(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3689.htm[doi:10.3724/SP.J. 1001.2010.03689]
    [53] Xiao QY, Xu K, Wang D, Li L, Zhong YF. TCP performance over mobile networks in high-speed mobility scenarios. In:Proc. of the IEEE 22nd Int'l Conf. on Network Protocols (ICNP). Raleigh:IEEE, 2014. 281-286.[doi:10.1109/ICNP.2014.49]
    [54] Ono F, Takizawa K, Tsuji H, Lin S, Kagawa T, Miura R. Measurement of TCP and UDP performance over UAS relay networks. In:Proc. of the IEEE Unmanned Aircraft Systems (ICUAS). Orlando:IEEE, 2014. 389-394.[doi:10.1109/ICUAS.2014.6842278]
    [55] Çetinkaya EK, Rohrer JP, Jabbar A, Alenazi MJ, Zhang DS, Broyles DS, Sterbenz JP. Protocols for highly-dynamic airborne networks. In:Proc. of the 18th Annual Int'l Conf. on Mobile Computing and Networking. New York:ACM Press, 2012. 411-414.[doi:10.1145/2348543.2348597]
    [56] Tu XJ, Li Q, Kou MY, Zhao CX, Xiong HG. Management of dynamic airborne network using cloud computing. In:Proc. of the IEEE/AIAA 31st Digital Avionics Systems Conf. (DASC). Williamsburg:IEEE, 2012.[doi:10.1109/DASC.2012.6382347]
    [57] Xie JF, Wan Y, Namuduri K, Fu SL, Peterson GL, Raquet JF. Estimation and validation of the 3D smooth-turn mobility model for airborne networks. In:Proc. of the IEEE Military Communications Conf. (MILCOM). San Diego:IEEE, 2013. 556-561.[doi:10.1109/MILCOM.2013.101]
    [58] Biomo JDMM, Kunz T, St-Hilaire M. An enhanced Gauss-Markov mobility model for simulations of unmanned aerial ad hoc networks. In:Proc. of the Wireless and Mobile Networking Conf. Vilamoura:IEEE, 2014. 1-8.[doi:10.1109/WMNC.2014. 6878879]
    [59] Li J, Gong E, Sun Z, Liu W, Xie HW. AeroMTP:A fountain code-based multipath transport protocol for airborne networks. Chinese Journal of Aeronautics, 2015,28(4):1147-1162.[doi:10.1016/j.cja.2015.05.010]
    [60] Jiang W, Huang S, Wang H, Xu X. Research on cross-layer optimization for intra-flight ad hoc networks. In:Proc. of the IEEE Computational Intelligence & Communication Technology (CICT). Ghaziabad:IEEE, 2015. 427-431.[doi:10.1109/CICT.2015. 58]
    附中文参考文献:
    [12] 任丰原,黄海宁,林闯.无线传感器网络.软件学报,2003,14(7):1282-1291. http://www.jos.org.cn/1000-9825/14/1282.htm
    [13] 陈立家,江昊,吴静,郭成城,徐武平,晏蒲柳.车用自组织网络传输控制研究.软件学报,2007,18(6):1477-1490. http://www.jos.org.cn/1000-9825/18/1477.htm
    [14] 卢勇,赵有健,孙富春,李洪波,倪国旗,王殿军.卫星网络路由技术.软件学报,2014,25(5):1085-1100. http://www.jos.org/1000-9825/4581.htm[doi:10.13328/j.cnki.jos.004581]
    [21] 寇明延,赵然.现代航空通信技术.北京:国防工业出版社,2011.
    [22] 曾浩洋,田勇春,译.战术无线通信与网络-设计概念与挑战.北京:国防工业出版社,2014.
    [25] 郑博,张衡阳,黄国策,任清华.航空自组网的现状与发展.电信科学,2011,27(5):38-47.
    [26] 吴伟强,郑石,张钦宇.面向高动态高空平台网络的路由协议研究.通信学报,2012,33(1):153-159.
    [31] 王叶群,杨峰,黄国策.一种航空自组网中带差分服务的跳频MAC协议建模.软件学报,2013,24(9):2214-2225. http://www.jos.org.cn/1000-9825/4335.hm[doi:10.3724/SP.J.1001.2013.04335]
    [52] 苏金树,胡乔林,赵宝康,彭伟.容延容断网络路由技术.软件学报,2010,21(1):119-132. http://www.jos.org.cn/1000-9825/3689.htm[doi:10.3724/SP.J.1001.2010.03689]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梁一鑫,程光,郭晓军,周爱平.机载网络体系结构及其协议栈研究进展.软件学报,2016,27(1):96-111

复制
分享
文章指标
  • 点击次数:6649
  • 下载次数: 9612
  • HTML阅读次数: 4081
  • 引用次数: 0
历史
  • 收稿日期:2015-01-31
  • 最后修改日期:2015-04-09
  • 在线发布日期: 2015-11-04
文章二维码
您是第19894460位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号