基于负载高峰特征的虚拟机放置算法
作者:
基金项目:

国家自然科学基金(61402183);广东省科技计划(2016A010101007,2016B090918021,2014B010117001,2014A010103022,2014A010103008,2013B010202001);广州市科技计划项目(201607010048,201604010040);中央高校科研业务费(2015ZZ0038)


Virtual Machine Placement Algorithm Based on Peak Workload Characteristics
Author:
Fund Project:

National Natural Science Foundation of China (61402183); Guangdong Provincial Science and Technology Projects (2016A010101007, 2016B090918021, 2014B010117001, 2014A010103022, 2014A010103008, 2013B010202001); Guangzhou Civic Science and Technology Project (201607010048); Fundamental Research Funds for the Central Universities, SCUT (2015ZZ0038)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了一种基于虚拟机负载高峰特征的虚拟机放置策略,通过更好地复用物理主机资源来实现资源共享,从而提高资源利用率.在云环境下,当多个虚拟机的负载高峰出现在相同的时间段内时,非高峰时段的资源利用率就会明显偏低;相反,多个虚拟机只要负载高峰能错开在不同的时间,闲置的资源就能更充分地被利用.由于应用的负载通常具有一定的周期性,因此,可以利用虚拟机负载的历史数据作为分析的依据.基于虚拟机的负载高峰特征对虚拟机负载进行建模,建立虚拟机负载之间的相似度矩阵来实现虚拟机联合放置.使用CloudSim模拟实现了所提出的算法,并与基于相关系数的放置算法、随机放置算法进行了比较.实验结果表明:所提算法在平均CPU利用率上有8.9%~12.4%的提高,主机使用量有8.2%~11.0%的节省.

    Abstract:

    This paper proposes a novel method to allocate virtual machines by statistical resource multiplexing based on the characteristics of virtual machine's peak workloads. In a cloud environment, if the peak workloads of multiple virtual machines overlap, the resource utilization of the cloud system can be significantly low when all these virtual machines enter the non-peak workload phases. If the overlap of workload peaks among virtual machines can be avoided, resource utilization will not fluctuate so much (heavily loaded during peak period and largely idle during non-peak period). Since the workload of an application usually follows a cyclic pattern, historical data can be analyzed to predict future workload. This paper models the workload characteristics of virtual machines through monitoring their peak workloads. A similarity matrix of VM's workloads is used to allocate virtual machines so that their workload peaks will not overlap. The performance study using CloudSim demonstrates that the proposed virtual machine allocation algorithm improves the CPU utilization by 8.9% to 12.4% under different workloads compared to the random allocation algorithm. The number of hosts needed by the algorithm is also reduced by 8.2% to 11.0% under the same workload requirements.

    参考文献
    [1] Foster I, Zhao Y, Raicu I, Lu SY. Cloud computing and grid computing 360-degree compared. In:Proc. of the Grid Computing Environments Workshop (GCE 2008). 2008.1-6. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4738445&tag=1
    [2] Chen K, Zheng WM. Cloud computing:System instances and current research. Ruan Jian Xue Bao/Journal of Software, 2009,20(5):1337-1348(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3493.htm[doi:10.3724/SP.J.1001.2009.03493]
    [3] Lin WW, Qi DY. Survey of resource scheduling in cloud computing. Computer Science, 2012,39(10):1-6(in Chinese with English abstract).
    [4] Deng W, Liu FM, Jin H, Li D. Leveraging renewable energy in cloud computing datacenters:State of the art and future research. Chinese Journal of Computers, 2013,36(3):82-98(in Chinese with English abstract).
    [5] Ye KJ, Wu ZH, Jiang XH, He QM. Power management of virtualized cloud computing platform. Chinese Journal of Computers, 2012,35(6):1262-1285(in Chinese with English abstract).
    [6] Lin WW, Liang C, Wang JZ, Buyya R. Bandwidth-Aware divisible task scheduling for cloud computing. Software:Practice and Experience, 2014,44(2):163-174.[doi:10.1002/spe.2163]
    [7] Lin WW, Wang JZ, Liang C, Qi DY. A threshold-based dynamic resource allocation scheme for cloud computing. Procedia Engineering, 2011,23:695-703.[doi:10.1016/j.proeng.2011.11.2568]
    [8] Lin WW, Qi DY. Research on resource self-organizing model for cloud computing. In:Proc. of the 2010 Int'l Conf. on Internet Technology and Applications. 2010.1-5.[doi:10.1109/ITAPP.2010.5566394]
    [9] Lin WW, Liu B, Zhu LC, Qi DY. CSP-Based resource allocation model and algorithms for energy-efficient cloud computing. Journal on Communications, 2013,34(12):33-41(in Chinese with English abstract).
    [10] Chen M, Zhang H, Su YY, Wang XR, Jiang GF, Yoshihira KJ. Effective vm sizing in virtualized data centers. In:Proc. of the IFIP/IEEE Int'l Symp. on Integrated Network Management (IM 2011). IEEE, 2011.594-601.[doi:10.1109/INM.2011.5990564]
    [11] Kim J, Ruggiero M, Atienza D, Lederberger M. Correlation-Aware virtual machine allocation for energy-efficient datacenters. In:Proc. of the Conf. on Design, Automation and Test in Europe. EDA Consortium, 2013.1345-1350.[doi:10.7873/DATE.2013.277]
    [12] Wei L, Huang T, Chen JY, Liu YJ. Workload prediction-based algorithm for consolidation of virtual machines. Journal of Electronics & Information Technology, 2013,35(6):1271-1276(in Chinese with English abstract).[doi:10.3724/SP.J.1146.2012.01131]
    [13] Meng X, Isci C, Kephart J, Zhang L, Bouillet E, Pendarakis D. Efficient resource provisioning in compute clouds via VM multiplexing. In:Proc. of the 7th Int'l Conf. on Autonomic Computing. ACM Press, 2010.11-20.[doi:10.1145/1809049.1809052]
    [14] Nakada H, Hirofuchi T. Toward virtual machine packing optimization based on genetic algorithm. In:Proc. of the 10th Int'l Work Conf. on Artificial Neural Networks. Part 2:Distributed Computing, Artificial Intelligence Bioinformatics Soft Computing and Ambient Assisted Living. LNCS 5518, Berlin, Heidelberg:Springer-Verlag, 2009.651-654.[doi:10.1007/978-3-642-02481-8_96]
    [15] Hirofuchi T, Nakada H, Ogawa H, Itoh S, Sekiguchi S. Eliminating datacenter idle power with dynamic and intelligent vm relocation. In:Proc. of the Distributed Computing and Artificial Intelligence. Berlin, Heidelberg:Springer-Verlag, 2010.645-648.[doi:10.1007/978-3-642-14883-5_82]
    [16] Agrawal S, Bose SK, Sundarrajan S. Grouping genetic algorithm for solving the server consolidation problem with conflicts. In:Proc. of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation. ACM Press, 2009.1-8.[doi:10.1145/1543834.1543836]
    [17] Gao Y, Guan H, Qi Z, Hou Y, Liu L. A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. Journal of Computer and System Sciences, 2013.[doi:10.1016/j.jcss.2013.02.004]
    [18] Hu J, Gu J, Sun G, Zhao T. A scheduling strategy on load balancing of virtual machine resources in cloud computing environment. In:Proc. of the 20103rd Int'l Symp. on Parallel Architectures, Algorithms and Programming (PAAP). IEEE, 2010.89-96.[doi:10.1109/PAAP.2010.65]
    [19] Barroso LA, Hölzle U. The datacenter as a computer:An introduction to the design of warehouse-scale machines. Synthesis Lectures on Computer Architecture, 2009,4(1):1-108.
    [20] Ostermann S, Iosup A, Yigitbasi N, Prodan R, Fahringer T, Epema D. A performance analysis of EC2 cloud computing services for scientific computing. In:Proc. of the Cloud Computing. Berlin, Heidelberg:Springer-Verlag, 2010.115-131.[doi:10.1007/978-3-642-12636-9_9]
    [21] Calheiros RN, Ranjan R, Rose CAFD, Buyya R. CloudSim:A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Wiley Online Library, 2010.
    [22] Zamanifar K, Nasri N. Mohammad-Hossein Nadimi-Shahraki. Data-Aware virtual machine placement and rate allocation in cloud environment. In:Proc. of the 20122nd Int'l Conf. on Advanced Computing & Communication Technologies (ACCT). IEEE, 2012.357-360.[doi:10.1109/ACCT.2012.40]
    附中文参考文献:
    [2] 陈康,郑纬民.云计算:系统实例与研究现状.软件学报,2009,20(5):1337-1348. http://www.jos.org.cn/1000-9825/3493.htm[doi:10.3724/SP.J.1001.2009.03493]
    [3] 林伟伟,齐德昱.云计算资源调度研究综述.计算机科学,2012,39(10):1-6.
    [4] 邓维,刘方明,金海,李丹.云计算数据中心的新能源应用:研究现状与趋势.计算机学报,2013,36(3):582-598.
    [5] 叶可江,吴朝晖,姜晓红,何钦铭.虚拟化云计算平台的能耗管理.计算机学报,2012,35(6):1262-1285.
    [9] 林伟伟,刘波,朱良昌.齐德昱.基于CSP的能耗高效云计算资源调度模型与算法.通信学报,2013,34(12):33-41.
    [12] 魏亮,黄韬,陈建亚,刘韵洁.基于工作负载预测的虚拟机整合算法.电子与信息学报,2013,35(6):1271-1276.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐思尧,林伟伟,王子骏.基于负载高峰特征的虚拟机放置算法.软件学报,2016,27(7):1876-1887

复制
分享
文章指标
  • 点击次数:3564
  • 下载次数: 4682
  • HTML阅读次数: 1328
  • 引用次数: 0
历史
  • 收稿日期:2014-12-01
  • 最后修改日期:2015-04-09
  • 在线发布日期: 2016-07-07
文章二维码
您是第19780803位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号