基于负载高峰特征的虚拟机放置算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61402183);广东省科技计划(2016A010101007,2016B090918021,2014B010117001,2014A010103022,2014A010103008,2013B010202001);广州市科技计划项目(201607010048,201604010040);中央高校科研业务费(2015ZZ0038)


Virtual Machine Placement Algorithm Based on Peak Workload Characteristics
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61402183); Guangdong Provincial Science and Technology Projects (2016A010101007, 2016B090918021, 2014B010117001, 2014A010103022, 2014A010103008, 2013B010202001); Guangzhou Civic Science and Technology Project (201607010048); Fundamental Research Funds for the Central Universities, SCUT (2015ZZ0038)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于虚拟机负载高峰特征的虚拟机放置策略,通过更好地复用物理主机资源来实现资源共享,从而提高资源利用率.在云环境下,当多个虚拟机的负载高峰出现在相同的时间段内时,非高峰时段的资源利用率就会明显偏低;相反,多个虚拟机只要负载高峰能错开在不同的时间,闲置的资源就能更充分地被利用.由于应用的负载通常具有一定的周期性,因此,可以利用虚拟机负载的历史数据作为分析的依据.基于虚拟机的负载高峰特征对虚拟机负载进行建模,建立虚拟机负载之间的相似度矩阵来实现虚拟机联合放置.使用CloudSim模拟实现了所提出的算法,并与基于相关系数的放置算法、随机放置算法进行了比较.实验结果表明:所提算法在平均CPU利用率上有8.9%~12.4%的提高,主机使用量有8.2%~11.0%的节省.

    Abstract:

    This paper proposes a novel method to allocate virtual machines by statistical resource multiplexing based on the characteristics of virtual machine's peak workloads. In a cloud environment, if the peak workloads of multiple virtual machines overlap, the resource utilization of the cloud system can be significantly low when all these virtual machines enter the non-peak workload phases. If the overlap of workload peaks among virtual machines can be avoided, resource utilization will not fluctuate so much (heavily loaded during peak period and largely idle during non-peak period). Since the workload of an application usually follows a cyclic pattern, historical data can be analyzed to predict future workload. This paper models the workload characteristics of virtual machines through monitoring their peak workloads. A similarity matrix of VM's workloads is used to allocate virtual machines so that their workload peaks will not overlap. The performance study using CloudSim demonstrates that the proposed virtual machine allocation algorithm improves the CPU utilization by 8.9% to 12.4% under different workloads compared to the random allocation algorithm. The number of hosts needed by the algorithm is also reduced by 8.2% to 11.0% under the same workload requirements.

    参考文献
    相似文献
    引证文献
引用本文

徐思尧,林伟伟,王子骏.基于负载高峰特征的虚拟机放置算法.软件学报,2016,27(7):1876-1887

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-12-01
  • 最后修改日期:2015-04-09
  • 录用日期:
  • 在线发布日期: 2016-07-07
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号