Collaborative filtering (CF) is the core of most of today's recommender systems. Conventional CF models focus on the accuracy of predicted ratings, while the actual output of recommender systems is a list of ranked items. In response to this problem, this research introduces technologies in the field of learning to rank into recommendation algorithms and proposes a listed collaborative ranking algorithm based on the assumption that the rating matrix is locally low-rank. It directly uses list-wise ranking loss function to optimize the matrix factorization model. Significant improvement on operation speed is achieved and verified by experiment. Experiments on three real-world recommender system datasets show that the proposed algorithm is a viable approach compared with existing recommendation algorithms.
[1] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.[doi:10.1109/TKDE.2005.99]
[2] Su X, Khoshgoftaar TM. A survey of collaborative filtering techniques. In:Proc. of the Advances in artificial intelligence. 2009.[doi:10.1155/2009/421425]
[3] Balakrishnan S, Chopra S. Collaborative ranking. In:Proc. of the 5th ACM Int'l Conf. on Web Search and Data Mining. ACM Press, 2012. 143-152.[doi:10.1145/2124295.2124314]
[4] Liu TY. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 2009,3(3):225-331.[doi:10. 1561/1500000016]
[5] Linden G, Smith B, York J. Amazon.com recommendations:Item-to-item collaborative filtering. Internet Computing, IEEE, 2003, 7(1):76-80.[doi:10.1109/MIC.2003.1167344]
[6] Breese JS, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. In:Proc. of the 14th Conf. on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers, 1998. 43-52.
[7] Herlocker JL, Konstan JA, Borchers A, Riedl J. An algorithmic framework for performing collaborative filtering. In:Proc. of the 22nd Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 1999. 230-237.[doi:10. 1145/312624.312682]
[8] Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In:Proc. of the 10th Int'l Conf. on World Wide Web. ACM Press, 2001. 285-295.[doi:10.1145/371920.372071]
[9] Bell RM, Koren Y. Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In:Proc. of the 7th IEEE Int'l Conf. on Data Mining (ICDM 2007). Omaha:IEEE, 2007. 43-52.[doi:10.1109/ICDM.2007.90]
[10] Miyahara K, Pazzani MJ. Collaborative filtering with the simple Bayesian classifier. In:Proc. of the PRICAI 2000 Topics in Artificial Intelligence. Berlin, Heidelberg:Springer-Verlag, 2000. 679-689.[doi:10.1007/3-540-44533-1_68]
[11] Miyahara K, Pazzani MJ. Improvement of collaborative filtering with the simple Bayesian classifier 1. 2002.[doi:10.1007/3-540-44533-1_68]
[12] Sarwar BM, Karypis G, Konstan J, Riedl J. Recommender systems for large-scale e-commerce:Scalable neighborhood formation using clustering. In:Proc. of the 5th Int'l Conf. on Computer and Information Technology. 2002.
[13] Vucetic S, Obradovic Z. Collaborative filtering using a regression-based approach. Knowledge and Information Systems, 2005,7(1):1-22.[doi:10.1007/s10115-003-0123-8]
[14] Lemire D, Maclachlan A. Slope one predictors for online rating-based collaborative filtering. In:Proc. of the SDM. 2005. 1-5.
[15] Hofmann T. Latent semantic models for collaborative filtering. ACM Trans. on Information Systems, 2004,22(1):89-115.[doi:10. 1145/963770.963774]
[16] Salakhutdinov R, Mnih A, Hinton G. Restricted Boltzmann machines for collaborative filtering. In:Proc. of the 24th Int'l Conf. on Machine Learning. ACM Press, 2007. 791-798.[doi:10.1145/1273496.1273596]
[17] Billsus D, Pazzani MJ. Learning collaborative information filters. In:Proc. of the ICML. 1998. 46-54.
[18] Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature, 1999,401(6755):788-791.[doi:10.1038/44565]
[19] Salakhutdinov R, Mnih A. Probabilistic matrix factorization. In:Platt JC, Koller D, Singer Y, Roweis ST, eds. Proc. of the 21st Annual Conf. on Neural Information Processing Systems (NIPS 2007). Vancouver:Curran Associates, Inc., 2007.
[20] Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In:Proc. of the 25th Int'l Conf. on Machine Learning (ICML 2008). New York:ACM Press, 2008. 880-887.[doi:10.1145/1390156.1390267]
[21] Lawrence ND, Urtasun R. Non-Linear matrix factorization with Gaussian processes. In:Proc. of the 26th Annual Int'l Conf. on Machine Learning. ACM Press, 2009. 601-608.[doi:10.1145/1553374.1553452]
[22] Rennie JDM, Srebro N. Fast maximum margin matrix factorization for collaborative prediction. In:Proc. of the 22nd Int'l Conf. on Machine Learning. ACM Press, 2005. 713-719.[doi:10.1145/1102351.1102441]
[23] Yu K, Zhu S, Lafferty J, Gong YH. Fast nonparametric matrix factorization for large-scale collaborative filtering. In:Proc. of the 32nd Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 2009. 211-218.[doi:10.1145/1571941.1571979]
[24] Koren Y. Factorization meets the neighborhood:A multifaceted collaborative filtering model. In:Li Y, Liu B, Sarawagi S, eds. Proc. of the 14th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2008). New York:ACM Press, 2008. 426-434.[doi:10.1145/1401890.1401944]
[25] Volkovs M, Zemel RS. Collaborative ranking with 17 parameters. In:Proc. of the Advances in Neural Information Processing Systems. 2012. 2294-2302.
[26] Koren.Y, Sill J. OrdRec:An ordinal model for predicting personalized item rating distributions. In:Mobasher B, Burke RD, Jannach D, Adomavicius G, eds. Proc. of the 5th ACM Conf. on Recommender Systems (RecSys 2011). New York:ACM Press, 2011. 117-124.[doi:10.1145/2043932.2043956]
[27] Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L. BPR:Bayesian personalized ranking from implicit feedback. In:Proc. of the 25th Conf. on Uncertainty in Artificial Intelligence. AUAI Press, 2009. 452-461.
[28] Shi Y, Larson M, Hanjalic A. List-Wise learning to rank with matrix factorization for collaborative filtering. In:Proc. of the 4th ACM Conf. on Recommender Systems. ACM Press, 2010. 269-272.[doi:10.1145/1864708.1864764]
[29] Liu NN, Yang Q. Eigenrank:A ranking-oriented approach to collaborative filtering. In:Proc. of the 31st Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 2008. 83-90.[doi:10.1145/1390334.1390351]
[30] Shi Y, Karatzoglou A, Baltrunas L, Larson M. TFMAP:Optimizing MAP for top-n context-aware recommendation. In:Hersh W, ed. Proc. of the 35th Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR 2012). New York:ACM Press, 2012. 155-164.[doi:10.1145/2348283.2348308]
[31] Shi Y, Karatzoglou A, Baltrunas L, Larson M, Oliver N, Hanjalic A. Climf:Learning to maximize reciprocal rank with collaborative less-is-more filtering. In:Proc. of the 6th ACM Conf. on Recommender Systems(RecSys 2013). Dublin:ACM Press, 2012. 139-146.[doi:10.1145/2365952.2365981]
[32] Weimer M, Karatzoglou A, Le QV, Smola A. Maximum margin matrix factorization for collaborative ranking. In:Proc. of the Advances in Neural Information Processing Systems. 2007.
[33] Weimer M, Karatzoglou A, Smola A. Improving maximum margin matrix factorization. Machine Learning, 2008,72(3):263-276.[doi:10.1007/s10994-008-5073-7]
[34] Lee J, Bengio S, Kim S, Lebanon G, Singer Y. Local collaborative ranking. In:Proc. of the 23rd Int'l Conf. on World Wide Web (WWW 2014). Seoul, 2014. 85-96.[doi:10.1145/2566486.2567970]
[35] Lee J, Kim S, Lebanon G, Singer Y. Local low-rank matrix approximation. In:Proc. of the 30th Int'l Conf. on Machine Learning. 2013. 82-90.
[36] Cao Z, Qin T, Liu TY, Tsai MF, Li H. Learning to rank:From pairwise approach to listwise approach. In:Proc. of the 24th Int'l Conf. on Machine Learning. ACM Press, 2007. 129-136.[doi:10.1145/1273496.1273513]
[37] Lee J, Sun M, Lebanon G. Prea:Personalized recommendation algorithms toolkit. The Journal of Machine Learning Research, 2012, 13(1):2699-2703.