覆盖学习的道路优化算法
作者:
基金项目:

国家自然科学基金(61033013); 东吴学者计划(14317360)


Path Optimization Algorithms for Covering Learning
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在之前的研究中,已经针对李群多连通空间上具有不同类别特征的研究对象,提出了多连通覆盖学习算法,成功地将覆盖学习应用到多连通李群空间.主要针对多连通覆盖学习算法中连通道路的交叉问题,考虑在李群空间上寻找一条测地曲线,使得映射后不同单连通空间上的道路的关联度最小化、同一单连通空间上的道路的关联度最大化,从而实现连通空间上类别判别性能的优化.首先回顾李群连通性质的相关知识;然后,简单介绍了多连通覆盖学习算法,并针对问题给出新的优化算法;最终,通过与经典覆盖学习算法、李群均值算法以及原始算法的比较实验,证明了该优化算法具有更好的分类性能.

    Abstract:

    The present paper focuses on the problem of the connected road intersection of multiply connected Lie group covering learning which was recently shown to possess a cover learning based on the connectivity of Lie group on the author's previous studies. It discusses a geodesic curve for optimal mapping of roads to minimize the correlation of roads from different connected spaces and maximize the correlation of roads within the same connected space. A review on some relevant notions from Lie-group connectivity theory is provided, followed by a brief introduction of multiply connected covering learning algorithm. New path optimization algorithms are then proposed. Some numerical experiments compared with classical covering learning methods, Lie group means learning algorithms and the author's previous algorithm serve to illustrate the better classification performance of the presented optimization algorithms.

    参考文献
    [1] Wang SJ. Bionic (Topological) pattern recognition-A new model of pattern recognition theory and its applications. Acta Electronica Sinica, 2002,30(10):1417-1420 (in Chinese with English abstract).[doi:10.3321/j.issn:0372-2112.2002.10.001]
    [2] He Q, Shi ZZ, Ren LA. The classification method based on hyper surface. In:Proc. of the 2002 Int'l Joint Conf. on Neural Networks. Honolulu:IEEE, 2002. 1499-1503.[doi:10.1109/IJCNN.2002.1007739]
    [3] Zhang L, Zhang B. A geometrical representation of McCulloch-pits neural model and its applications. IEEE Trans. on Neural Networks, 1999,10(4):925-929.[doi:10.1109/72.774263]
    [4] Zhang L, Zhang B. Across covering algorithm of multiplayer forward networks. Ruan Jian Xue Bao/Journal of Software, 1999, 10 (7):737-742 (in Chinese with English abstract). http://www.jos.org.cn/ch/reader/create_pdf.aspx?file_no=19990712&journal_id=jos
    [5] Zhang YP, Zhang L, Duan Z. A constructive kernel covering algorithm and applying it to image recognition. Journal of Image and Graphics, 2004,9(11):1304-1308 (in Chinese with English abstract).[doi:10.3969/j.issn.1006-8961.2004.11.006]
    [6] Wu T, Zhang L, Zhang YP. Kernel covering algorithm for machine learning. Chinese Journal of Computers, 2005,28(8):1295-1301 (in Chinese with English abstract).[doi:10.3321/j.issn:0254-4164.2005.08.006]
    [7] Wu T, Zhang FF. Multi-Side covering algorithm based on feature selection. Journal of Computer Applications, 2011,31(5):1318-1320 (in Chinese with English abstract).[doi:10.3724/SP.J.1087.2011.01318]
    [8] Jia RY, Ning ZZ. Particle swarm optimization covering algorithm. Computer Engineering, 2011,37(21):167-169 (in Chinese with English abstract).
    [9] Chen J, Zhao S, Zhang Y. Hierarchical covering algorithm. Tsinghua Science and Technology, 2014,19(1):76-81.[doi:10.1109/TST.2014.6733210]
    [10] Zhang YP, Zhang H, Wei HZ, Tang J, Zhao S. Multiple-Instance learning with Instance selection via constructive covering algorithm. Tsinghua Science and Technology, 2014,19(3):285-292.[doi:10.1109/TST.2014.6838199]
    [11] Yan C, Li FZ, Zou P. Multiply connected Lie group covering learning algorithm for image classification. Journal of Frontiers of Computer Science and Technology, 2014,8(9):1101-1112 (in Chinese with English abstract).[doi:10.3778/j.issn.1673-9418.1403 055]
    [12] Huang BJ. Homology and Homotopy Theory. Hefei:Science & Technology Publishing House, 2005 (in Chinese).
    [13] Jiang ZH. Introduction to Topology. Shanghai:Shanghai Scientific & Technical Publishers, 1978 (in Chinese).
    [14] Baker A. Matrix Groups:An Introduction to Lie Group Theory. New York:Spinger-Verlag, 2002.[doi:10.1007/978-1-4471-01 83-3]
    [15] Gallier J. Notes on Differential Geometry and Lie Groups. Philadelphia:University of Pennsylvannia, 2012.
    [16] Gilmore R. Lie Groups, Lie Algebras, and Some of Their Applications. New York:Courier Corporation, 2012.
    [17] Fiori S, Tanaka T. An algorithm to compute averages on matrix Lie groups. IEEE Trans. on Signal Processing, 2009,57(12):4734-4743.[doi:10.1109/TSP.2009.2027754]
    [18] Li FZ, Zhang L, Yang JW, Qian XP, Wang BJ, He SP. Lie Group Machine Learning. Hefei:University of Science and Technology of China Press, 2013 (in Chinese).
    [19] Ma ZQ. Group Theory in Physics. Beijing:Science Press, 1998 (in Chinese).
    [20] Yarlagadda P, Ozcanli O, Mundy J. Lie group distance based generic 3-d vehicle classification. In:Proc. of the 2008 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2008. 1-4.[doi:10.1109/ICPR.2008.476 1497]
    [21] Gao C, Li FZ. Lie group means learning algorithm. Pattern Recognition and Artificial Intelligence, 2012,25(6):900-908 (in Chinese with English abstract).[doi:10.3969/j.issn.1003-6059.2012.06.003]
    [22] Masashi S. Local fisher discriminant analysis for supervised dimensionality reduction. In:Proc. of the 23rd Int'l Conf. on Machine Learning. Pittsburgh:ACM Press, 2006.[doi:10.1145/1143844.1143958]
    [23] Duda RO, Hart PE, Stork DG. Patten Classification. New York:Wiley, 2001.
    [24] Flecher T, Lu C, Joshi S. Statistics of shape via principal geodesic analysis on Lie groups. In:Proc. of the 2003 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2003. 95-101.[doi:10.1109/CVPR.2003.1211342]
    [25] Ying SH, Peng YX, Wen ZJ. Iwasawa decomposition:A new approach to 2D affine registration problem. Pattern Analysis and Applications, 2011,14(2):127-137.[doi:10.1007/s10044-010-0193-7]
    [26] Žefran M, Kumar V, Croke C. Metrics and connections for rigid-body kinematics. The Int'l Journal of Robotics Research, 1999, 18 (2):242-1-242-16.[doi:10.1177/027836499901800208]
    附中文参考文献:
    [1] 王守觉.仿生模式识别(拓扑模式识别)——一种模式识别新模型的理论与应用.电子学报,2002,30(10):1417-1420.[doi:10.3321/j.issn:0372-2112.2002.10.001]
    [4] 张铃,张钹,殷海风.多层前向网络的交叉覆盖设计算法.软件学报,1999,10(7):737-742. http://www.jos.org.cn/ch/reader/create_pdf.aspx?file_no=19990712&journal_id=jos
    [5] 张燕平,张铃,段震.构造性核覆盖算法在图像识别中的应用.中国图像图形学报,2004,9(11):1304-1308.[doi:10.3969/j.issn.1006-8961.2004.11.006]
    [6] 吴涛,张铃,张燕平.机器学习中的核覆盖算法.计算机学报,2005,28(8):1295-1301.[doi:10.3321/j.issn:0254-4164.2005.08.006]
    [7] 吴涛,张方方.基于特征选择的多侧面覆盖算法.计算机应用,2011,31(5):1318-1320.[doi:10.3724/SP.J.1087.2011.01318]
    [8] 贾瑞玉,宁再早.粒子群优化覆盖算法.计算机工程,2011,37(21):167-169.[doi:10.3969/j.issn.1000-3428.2011.21.057]
    [11] 严晨,李凡长,邹鹏.多连通李群覆盖学习算法在图像分类上的应用.计算机科学与探索,2014,8(9):1101-1112.[doi:10.3778/j.issn.1673-9418.1403055]
    [12] 黄保军.同调与同伦原理.合肥:中国科学技术出版社,2005.16-59.
    [13] 江泽涵.拓扑学引论.上海:上海科学技术出版社,1978.25-169.
    [18] 李凡长,张莉,杨季文,钱旭培,王邦军,何书萍.李群机器学习.合肥:中国科学技术大学出版社,2013.
    [19] 马中骐.物理学中的群论.北京:科学出版社,1998.
    [21] 高聪,李凡长.李群均值学习算法.模式识别与人工智能,2012,25(6):900-908.[doi:10.3969/j.issn.1003-6059.2012.06.003]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

严晨,李凡长.覆盖学习的道路优化算法.软件学报,2015,26(11):2781-2794

复制
分享
文章指标
  • 点击次数:5255
  • 下载次数: 6501
  • HTML阅读次数: 2365
  • 引用次数: 0
历史
  • 收稿日期:2015-05-30
  • 最后修改日期:2015-08-26
  • 在线发布日期: 2015-11-04
文章二维码
您是第19769208位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号