摘要:当今社会处在信息急剧膨胀的时代,数据的规模和维度都在不断增大,传统的聚类方法有很多难以适应这一趋势.尤其是移动计算平台的高速发展,其平台自身的特性限制了算法的内存使用规模,因此,以往的很多方法若不进行改进,在这类平台上将无法运行.提出了一种基于近邻表示的聚类方法,该方法基于近邻的思想构造出新的表示形式,这种表示可以进行压缩,因此有效地减少了聚类所需要的存储开销.实现了直接对近邻表示压缩后的数据进行聚类的算法,称为Bit k-means.实验结果表明,该方法取得了较好的效果,在提高准确率的同时,大幅度降低了存储空间开销.