视频人脸识别中判别性联合多流形分析
作者:
基金项目:

国家自然科学基金(61035003, 61175042, 61305068, 61432008); 山东省高等学校青年骨干教师国内访问学者项目; 山东省高等学校科技计划(J15LN58); 山东女子学院数据挖掘科研创新团队基金


Discriminative Joint Multi-Manifold Analysis for Video-Based Face Recognition
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    将基于视频的人脸识别转换为图像集识别问题,并提出两种流形来表示每个图像集:一种是类间流形,表示每个图像集的平均脸信息;另一种是类内流形,表示每个图像集的所有原始图像的信息.类间流形针对图像集之间的区别提取整体判别信息,作用是选出几个与待识别图像集较为相似的候选图像集.类内流形则考虑图像集内各原始图像之间的关系,负责从候选图像集中找出最为相似的一个.不同于现有的非线性流形方法中每幅图像对应流形中的一个点,采用分片技术学习两种流形的投影矩阵,每个分片对应流形中的一个点,所学到的特征更具有判别性,进而使流形边界更加清晰,同时解决了传统非线性流形方法中的角度偏差和不充分采样问题.还提出了与分片技术相匹配的流形之间的距离度量方法.最后在几个广为研究的数据集上进行了实验,结果表明:新方法的识别准确率高,尤其适用于不受控环境下的视频识别,而且不受视频段长短的影响.

    Abstract:

    In this paper, video-based face recognition (VFR) is converted into image set recognition. Two types of manifolds are proposed to represent each gallery set: one is inter-class manifold which represents mean face information of this set, and the other is intra- class manifold corresponding to original images information of this set. The inter-class manifold abstracts discriminative information of the whole image set so as to select a few candidate gallery sets relevant to query set. The intra-class manifold chooses the most similar one from candidate sets by considering the relationships among all original images of each gallery set. Existing nonlinear manifolds methods project each image into low dimensional space as a point, thus suffer from cluster alignment and un-sufficient sampling. In order to avoid the above flaws and make the margin clearer between manifolds, projecting matrices in new method are gotten by means of partitioning image into un-overlapping patches so that features extracted this way can be more discriminative. In addition, a method of similarity measure between manifolds is proposed in accordance with the patching scheme. Finally, extensive experiments are conducted on several widely studied databases. The results demonstrate that new method achieves better performance than those state-of-the-art VFR methods, and it especially works well in un-controlled videos without being affected by the length of video.

    参考文献
    [1] Barr JR, Bowyer KW, Flynn PJ, Biswas S. Face recognition from video:A review. Int'l Journal of Pattern Recognition and Artificial Intelligence, 2012,26(5):1-56.[doi:10.1142/S0218001412660024]
    [2] Liu X, Chen T. Video-Based face recognition using adaptive hidden Markov models. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. Washington:IEEE Computer Society, 2003. 340-345.[doi:10.1109/CVPR.2003.1211373]
    [3] Kim M, Kumar S, Pavlovic V, Rowley H. Face tracking and recognition with visual constraints in real-world videos. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. Anchorage:IEEE Computer Society, 2008. 1-8.[doi:10.1109/CVPR. 2008.4587572]
    [4] Lee KC, Ho J, Yang MH, Kriegman D. Visual tracking and recognition using probabilistic appearance manifolds. Computer Vision and Image Understanding, 2005,99(3):303-331.[doi:10.1016/j.cviu.2005.02.002]
    [5] Yan Y, Zhang YJ. State-of-the-Art on video-based face recognition. Chinese Journal of Computers, 2009,32(5):878-886 (in Chinese with English abstract).[doi:10.3724/SP.J.1016.2009.00878]
    [6] Arandjelović O, Shakhnarovich G, Fisher JW, Cipolla R, Darrell T. Face recognition with image sets using manifold density divergence. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. IEEE Computer Society, 2005. 581-588.[doi:10.1109/CVPR.2005.151]
    [7] Shakhnarovich G, Fisher JW, Darrell T. Face recognition from long-term observations. In:Proc. of the 7th European Conf. on Computer Vision. Berlin, Heidelberg:Springer-Verlag, 2002. 851-865.[doi:10.1007/3-540-47977-5_56]
    [8] Cevikalp H, Triggs B. Face recognition based on image sets. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. San Francisco:IEEE Computer Society, 2010. 2567-2573.[doi:10.1109/CVPR.2010.5539965]
    [9] Huang LK, Lu JW, Tan YP, Feng X. Collaborative reconstruction-based manifold-manifold distance for face recognition with image sets. In:Proc. of the 2013 IEEE Int'l Conf. on Multimedia and Expo (ICME). San Jose:IEEE Computer Society, 2013. 1-6.[doi:10.1109/ICME.2013.6607596]
    [10] Aggarwal G, Chowdhury AKR, Chellappa R. A system identification approach for video-based face recognition. In:Proc. of the 17th Int'l Conf. on Pattern Recognition. IEEE Computer Society, 2004. 175-178.[doi:10.1109/ICPR.2004.1333732]
    [11] Fukui K, Yamaguchi O. The kernel orthogonal mutual subspace method and its application to 3D object recognition. In:Proc. of the 8th Asian Conf. on Computer Vision. Berlin, Heidelberg:Springer-Verlag, 2007. 467-476.[doi:10.1007/978-3-540-76390-1_46]
    [12] Kim TK, Kittler J, Cipolla R. Discriminative learning and recognition of image set classes using canonical correlations. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007,29(6):1005-1018.[doi:10.1109/TPAMI.2007.1037]
    [13] Sanderson MTCC, Shirazi S, Lovell BC. Graph embedding discriminant analysis on grassmannian manifolds for improved image set matching. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. Providence:IEEE Computer Society, 2011. 2705-2712.[doi:10.1109/CVPR.2011.5995564]
    [14] Wang R, Shan S, Chen X, Chen J, Gao W. Maximal linear embedding for dimensionality reduction. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2011,33(9):1776-1792.[doi:10.1109/TPAMI.2011.39]
    [15] Wang R, Shan S, Chen X, Dai Q, Gao W. Manifold-Manifold distance and its application to face recognition with image sets. IEEE Trans. on Image Processing, 2012,20(10):4466-4479.[doi:10.1109/TIP.2012.2206039]
    [16] Cui Z, Shan S, Zhang H, Lao S, Chen X. Image sets alignment for video-based face recognition. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. Providence:IEEE Computer Society, 2012. 2626-2633.[doi:10.1109/CVPR.2012.6247 982]
    [17] Yamaguchi O, Fukui K, Maeda K. Face recognition using temporal image sequence. In:Proc. of the IEEE Int'l Conf. on Automatic Face and Gesture Recognition (AFGR). Nara:IEEE Computer Society, 1998. 318-323.[doi:10.1109/AFGR.1998.670968]
    [18] Hu Y, Mian AS, Owens R. Sparse approximated nearest points for image set classification. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. Providence:IEEE Computer Society, 2011. 121-128.[doi:10.1109/CVPR.2011.5995500]
    [19] Kim TK, Arandjelović O, Cipolla R. Boosted manifold principal angles for image set-based recognition. Pattern Recognition, 2007, 40(9):2475-2484.[doi:10.1016/j.patcog.2006.12.030]
    [20] Fan W, Yeung DY. Locally linear models on face appearance manifolds with application to dual-subspace based classification. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. New York:IEEE Computer Society, 2006. 1384-1390.[doi:10.1109/CVPR.2006.178]
    [21] Elhamifar E, Vidal R. Robust classification using structured sparse representation. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. Providence:IEEE Computer Society, 2011. 1873-1879.[doi:10.1109/CVPR.2011.5995664]
    [22] Chen YC, Patel VM, Shekhar S, Chellappa R, Phillips PJ. Video-Based face recognition via joint sparse representation. In:Proc. of the 10th IEEE Int'l Conf. and Workshops on Automatic Face and Gesture Recognition. Shanghai:IEEE Computer Society, 2013. 1-8.[doi:10.1109/FG.2013.6553787]
    [23] Chen SK, Sanderson C, Harandi MT, Lovell BC. Improved image set classification via joint sparse approximated nearest subspaces. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. Portland:IEEE Computer Society, 2013. 452-459.[doi:10.1109/CVPR.2013.65]
    [24] Cui Z, Chang H, Shan S, Ma B, Chen X. Joint sparse representation for video-based face recognition. Neurocomputing, 2014,135:306-312.[doi:10.1016/j.neucom.2013.12.004]
    [25] Bhatt HS, Singh R, Vatsa M. On recognizing faces in videos using clustering-based re-ranking and fusion. IEEE Trans. on Information Forensics and Securit, 2014,9(7):1056-1068.[doi:10.1109/TIFS.2014.2318433]
    [26] Patel VM, Chen YC, Chellappa R, Phillips PJ. Dictionaries for image and video-based face recognition. Journal of the Optical Society of America A, 2014,31(5):1090-1103.[doi:10.1364/JOSAA.31.001090]
    [27] Hadid A, Pietikäinen M. From still image to video-based face recognition:An experimental analysis. In:Proc. of the 6th IEEE Int'l Conf. on Automatic Face and Gesture Recognition. EEE Computer Society, 2004. 813-818.[doi:10.1109/AFGR.2004.1301634]
    [28] Kim M, Kumar S, Pavlovic V, Rowley H. Face tracking and recognition with visual constraints in real-world videos. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. Anchorage:IEEE Computer Society, 2008. 1-8.[doi:10.1109/CVPR. 2008.4587572]
    [29] Lu JW, Tan YP, Wang G. Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013,35(1):39-51.[doi:10.1109/TPAMI.2012.70]
    [30] Yao B, Ai H, Lao S. Person-Specific face recognition in unconstrained environments:A combination of offline and online learning. In:Proc. of the 11th IEEE Int'l Conf. on Automatic Face and Gesture Recognition. EEEE Computer Society, 2009. 1-8.[doi:10.11 09/AFGR.2008.4813353]
    [31] Lanitis A. Evaluating the performance of face-aging algorithms. In:Proc. of the 10th IEEE Int'l Conf. on Automatic Face and Gesture Recognition. Amsterdam:IEEE Computer Society, 2008. 1-6.[doi:10.1109/AFGR.2008.4813349]
    [32] Wang R, Chen X. Manifold discriminant analysis. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. Miami:IEEE Computer Society, 2009. 429-436.[doi:10.1109/CVPR.2009.5206850]
    [33] Tan PN, Steinbach M, Kumar V. Introduction to Data Mining. Addison-Wesley, 2005. 500-500.
    [34] Phillips PJ, Rizvi SA, Rauss PJ. The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(10):1090-1104.[doi:10.1109/34.879790]
    [35] Martinez AM, Benavente R. The AR face database. Technical Report, #24, Barcelona:Computer Vision Center (CVC), Universitat Autònoma de Barcelona, 1998.
    [36] Lee K, Ho J, Yang M, Kriegman D. Video-Based face recognition using probabilistic appearance manifolds. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. Washington:IEEE Computer Society, 2003. 1-8.[doi:10.1109/CVPR.2003.12 11369]
    [37] Gross R, Shi J. The CMU motion of body (MoBo) database. Technical Report, CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon University, 2001.
    [38] Nilsson M, Nordberg J, Claesson I. Face detection using local SMQT features and split up SNOW classifier. In:Proc. of the IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing (ICASSP). Honolulu:IEEE Computer Society, 2007. 589-592.[doi:10. 1109/ICASSP.2007.366304]
    [39] Sirovich L, Kirby M. Low-Dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A, 1987,4(5):519-525.[doi:10.1364/JOSAA.4.000519]
    附中文参考文献:
    [5] 严严,章毓晋.基于视频的人脸识别研究进展.计算机学报,2009,32(5):878-886.[doi:10.3724/SP.J.1016.2009.00878]
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

于谦,高阳,霍静,庄韫恺.视频人脸识别中判别性联合多流形分析.软件学报,2015,26(11):2897-2911

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-05-19
  • 最后修改日期:2015-08-26
  • 在线发布日期: 2015-11-04
文章二维码
您是第19894250位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号