大数据环境下移动对象自适应轨迹预测模型
作者:
基金项目:

国家自然科学基金(61100045, 61165013); 高等学校博士学科点专项科研基金(20110184120008); 教育部人文社会科学研究规划基金(15YJAZH058); 教育部人文社会科学研究青年基金(14YJCZH046); 中央高校基本科研业务费专项资金(2682013 BR023); 四川省教育厅资助科研项目(14ZB0458); 科学计算与智能信息处理广西高校重点实验室开放课题(GXSCIIP201407)


Self-Adaptive Trajectory Prediction Model for Moving Objects in Big Data Environment
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    已有的轨迹预测算法针对移动对象运动模式,使用数学模型进行交通流模拟,难以对路网中的移动对象进行准确的描述.为了解决这一问题,提出基于隐马尔可夫模型(hidden Markov model,简称HMM)的自适应轨迹预测模型SATP(self-adaptive trajectory prediction model based on HMM),对大数据环境下移动对象海量轨迹利用基于密度的聚类方法进行位置密度分区和高效分段处理,减少HMM的状态数量.根据输入轨迹自动选取参数组合,避免HMM模型中隐状态不连续、状态停留等问题.实验结果表明,SATP模型在实验中表现出较高的预测准确性,并维持较低的时间开销.针对速度随机改变的移动对象,其平均预测准确率为84.1%;相同情况下,平均高出朴素预测算法46.7%.

    Abstract:

    The existing trajectory prediction algorithms focus on the mobility pattern of objects and simulate the traffic flow via mathematical models which are inaccurate at describing network-constraint objects. In order to cope with this problem, a self-adaptive parameter selection trajectory prediction model based on hidden Markov models (SATP) is proposed. The new model can efficiently cluster and partition location big data, and extract the hidden and observable states by using a density-based clustering approach in order to reduce the number of states in HMM. SATP can automatically select the parameters on the input trajectories and avoid the problems of discontinuous hidden states and state retention. Experimental results demonstrate that the SATP model has high prediction accuracy with less time overhead. The average prediction accuracy of SATP is 84.1% while the moving objects have a random changing speed, which is higher than the Na?ve algorithm with an average gap of 46.7%.

    参考文献
    [1] Zhang JP, Wang FY, Wang KF, Lin WH, Xu X, Chen C. Data-Driven intelligent transportation systems:A survey. IEEE Trans. on Intelligent Transportation Systems, 2011,12(4):1624-1639.[doi:10.1109/TITS.2011.2158001]
    [2] Wang ZC, Lu M, Yuan XR, Zhang JP, Wetering H. Visual traffic jam analysis based on trajectory data. IEEE Trans. on Visualization and Computer Graphics, 2013,19(12):2159-2168.[doi:10.1109/TVCG.2013.228]
    [3] Meng XF, Ding ZM. Mobile Data Management:Concepts and Techniques. Beijing:Tsinghua University Press, 2009. 185-200 (in Chinese).
    [4] Guo C, Liu JN, Fang Y, Luo M, Cui JS. Value extraction and collaborative mining methods for location big data. Ruan Jian Xue Bao/Journal of Software, 2014,25(4):713-730 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4570.htm[doi:10.13328/j.cnki.jos.004570]
    [5] Calabrese F, Pereira FC, Francisco C, Di Lorenzo G, Liu L, Ratti C. The geography of taste:Analyzing cell-phone mobility and social events. In:Proc. of the 8th Int'l Conf. on Pervasive Computing. Springer-Verlag, 2010. 22-37.[doi:10.1007/978-3-642-126 54-3_2]
    [6] Calabrese F, Smoreda Z, Blondel VD, Ratti C. Interplay between telecommunications and face-to-face interactions:A study using mobile phone data. PLoS ONE, 2011,6(7):e20814.[doi:10.1371/journal.pone.0020814]
    [7] Qiao SJ, Han N, Wang C, Zhu F, Tang CJ. A two-tiered dynamic index structure of moving objects based on constrained networks. Chinese Journal of Computers, 2014,37(9):1947-1958 (in Chinese with English abstract).[doi:10.3724/SP.J.1016.2014.01947]
    [8] Monreale A, Pinelli F, Trasarti R, Giannotti F. WhereNext:A location predictor on trajectory pattern mining. In:Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York:ACM Press, 2009. 637-646.[doi:10.1145/1557019.1557091]
    [9] Ying JJ, Lee W, Weng T, Tseng VS. Semantic trajectory mining for location prediction. In:Proc. of the 19th ACM SIGSPATIAL Int'l Conf. on Advances in Geographic Information Systems. New York:ACM Press, 2011. 34-43.[doi:10.1145/2093973.2093 980]
    [10] Song MB, Ryu JH, Lee SK, Hwang CS. Considering mobility patterns in moving objects database. In:Proc. of the 2003 Int'l Conf. on Parallel Processing. Washington:IEEE, 2003. 597-604.[doi:10.1109/ICPP.2003.1240628]
    [11] Ishikawa Y, Tsukamoto Y, Kitagawa H. Extracting mobility statistics from indexed spatio-temporal datasets. In:Proc. of the 2nd Int'l Workshop on Spatio-Temporal Database Management. 2004. 9-16.
    [12] Asahara A, Maruyama K, Sato A, Seto K. Pedestrian-Movement prediction based on mixed Markov-chain model. In:Proc. of the 19th ACM SIGSPATIAL Int'l Conf. on Advances in Geographic Information Systems. New York:ACM Press, 2011. 25-33.[doi:10.1145/2093973.2093979]
    [13] Gambs S, Killijian M, Cortez DP, Miguel N. Next place prediction using mobility Markov chains. In:Proc. of the 1st Workshop on Measurement, Privacy, and Mobility. New York:ACM Press, 2012. 1-6.[doi:10.1145/2181196.2181199]
    [14] Qiao SJ, Shen DY, Wang XT, Han N, Zhu W. A self-adaptive parameter selection trajectory prediction approach via hidden Markov models. IEEE Trans. on Intelligent Transportation Systems, 2015,16(1):284-296.[doi:10.1109/TITS.2014.2331758]
    [15] Qiao SJ, Jin K, Han N, Tang CJ, Gesangduoji, Gutierrez LA. Trajectory prediction algorithm based on Gaussian mixture model. Ruan Jian Xue Bao/Journal of Software, 2015,26(5):1048-1063 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4796.htm[doi:10.13328/j.cnki.jos.004796]
    [16] Jensen CS, Lin D, Ooi BC, Zhang R. Effective density queries on continuously moving objects. In:Proc. of the 22nd Int'l Conf. on Data Engineering. Washington:IEEE, 2006. 71-71.[doi:10.1109/ICDE.2006.179]
    [17] Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In:Proc. of the 2nd Int'l Conf.on Knowledge Discovery and Data Mining. AAAI Press, 1996. 226-231.[doi:10.5120/739-1038]
    [18] Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. of the IEEE, 1989,77(2):257-286.[doi:10.1109/5.18626]
    [19] Zheng Y, Xie X, Ma WY. Geolife:A collaborative social networking service among user, location and trajectory. IEEE Data Engineering Bulletin, 2010,33(2):32-40.
    [20] Qiao SJ, Tang CJ, Jin HD, Long T, Dai SC, Ku YC, Chau M. PutMode:Prediction of uncertain trajectories in moving objects databases. Applied Intelligence, 2010,33(3):370-386.[doi:10.1007/s10489-009-0173-z]
    附中文参考文献:
    [3] 孟小峰,丁治明.移动数据管理:概念与技术.北京:清华大学出版社,2009.185-200.
    [4] 郭迟,刘经南,方媛,罗梦,崔竞松.位置大数据的价值提取与协同挖掘方法.软件学报,2014,25(4):713-730. http://www.jos.org.cn/1000-9825/4570.htm[doi:10.13328/j.cnki.jos.004570]
    [7] 乔少杰,韩楠,王超,祝峰,唐常杰.基于路网的移动对象动态双层索引结构.计算机学报,2014,37(9):1947-1958.[doi:10.3724/SP.J.1016.2014.01947]
    [15] 乔少杰,金琨,韩楠,唐常杰,格桑多吉,Gutierrez LA.一种基于高斯混合模型的轨迹预测算法.软件学报,2015,26(5):1048-1063. http://www.jos.org.cn/1000-9825/4796.htm[doi:10.13328/j.cnki.jos.004796]
    相似文献
    引证文献
引用本文

乔少杰,李天瑞,韩楠,高云君,元昌安,王晓腾,唐常杰.大数据环境下移动对象自适应轨迹预测模型.软件学报,2015,26(11):2869-2883

复制
分享
文章指标
  • 点击次数:6191
  • 下载次数: 9861
  • HTML阅读次数: 2557
  • 引用次数: 0
历史
  • 收稿日期:2015-02-19
  • 最后修改日期:2015-08-26
  • 在线发布日期: 2015-11-04
文章二维码
您是第19728113位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号