基于用户邻域和主题的新颖性Web社区推荐方法
作者:
基金项目:

国家自然科学基金(61232002,61303025);武汉科技局高新技术产业科技创新团队培养计划(2014070504020237)


Novel Web Community Recommendation Based on User Neighborhood and Topic
Author:
Fund Project:

National Natural Science Foundation of China (61232002, 61303025); Program for Innovative Research Team of Wuhan of China (2014070504020237)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    社区推荐从海量社区中为用户过滤出有价值的社区,变得越来越重要.新颖性推荐逐渐得到关注,因为单纯追求准确度的推荐结果存在局限性.已有新颖性推荐方法不适用于社区推荐,因其无法处理Web社区特性,包括社区成员用户通过交互形成的关系网络以及社区主题.提出了一种新颖性社区推荐方法NovelRec,向用户推荐其有潜在兴趣但不知道的社区,旨在拓展用户视野和推动社区发展.NovelRec基于用户交互网络中的邻域关系,利用用户之间在主题上的关联,计算候选社区对用户的准确度;根据用户与社区在邻域和主题上的关联,提出一种用户社区距离度量方式,并利用该距离计算候选社区的新颖度.在此基础上,NovelRec最终进行新颖性社区推荐,并兼顾推荐结果的准确性.真实数据集上的对比实验结果表明,NovelRec方法在新颖性上优于现有方法,同时能够保证推荐结果的准确性.

    Abstract:

    Community recommendation has become increasingly important in sifting valuable communities from massive amounts of communities on the Internet. In recent years novel recommendation is attracting attention, because of the limitation of accurate recommendation which purely pursues accuracy. Existing novel recommendation methods are not suitable for Web community as they fail to utilize unique features of Web community, including the social network established by interactions between users, and the topics of Web community. In this paper, a novel recommendation method, NovelRec, is proposed to suggest communities that users have not seen but are potentially interested in, in order to better broaden users' horizons and improve the development of communities. Specifically, the method explores neighborhood relationships and topical associations from the aforementioned features. First, NovelRec identifies candidate communities for users based on neighborhood relationships between users, and computes accuracy of the candidates using topical associations between users. Next, NovelRec computes novelty of the candidates based on a new metric of user-community distance, and the distance metric is defined by associations between users and communities on both user neighborhood and topic taxonomy. Finally, NovelRec balances novelty with accuracy for the candidates to improve the overall recommendation quality. Experimental results on a real data set of Douban communities show that the proposed method outperforms competitors on the recommendation novelty, and guarantees the recommendation accuracy.

    参考文献
    [1] Deshpande M, Karypis G. Item-Based top-n recommendation algorithms. ACM Trans. on Information Systems, 2004,22(1):143-177.[doi:10.1145/963770.963776]
    [2] Castagnos S, Boyer A. A client/server user-based collaborative filtering algorithm:Model and implementation. In:Brewka G, Coradeschi S, Perini A, eds. Proc. of the European Conf. on Artificial Intelligence. Riva del Garda:IOS Press, 2006. 617-621.
    [3] Wang J, De Vries AP, Reinders MJT. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In:Efthimiadis NE, Dumais ST, Hawking D, Jarvelin K, eds. Proc. of the Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York:ACM, 2006. 501-508.[doi:10.1145/1148170.1148257]
    [4] Chen WY, Chu JC, Luan J, Bai H, Wang Y, Chang EY. Collaborative filtering for orkut communities:Discovery of user latent behavior. In:Quemada J, Leon G, Maarek Y, Nejdl W, eds. Proc. of the Int'l Conf. on World Wide Web. New York:ACM, 2009. 681-690.[doi:10.1145/1526709.1526801]
    [5] Konstas I, Stathopoulos V, Jose JM. On social networks and collaborative recommendation. In:Allan J, Aslam JA, Sanderson M, Zhai CX, Zobel J, eds. Proc. of the Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York:ACM, 2009. 195-202.[doi:10.1145/1571941.1571977]
    [6] Jiang M, Cui P, Liu R,Yang Q, Wang F, Zhu W, Yang SQ. Social contextual recommendation. In:Chen XW, Lebanon G, Wang HX, Zaki MJ, eds. Proc. of the ACM Int'l Conf. on Information and Knowledge Management. New York:ACM, 2012. 45-54.[doi:10.1145/2396761.2396771]
    [7] McNee SM, Riedl J, Konstan JA. Being accurate is not enough:How accuracy metrics have hurt recommender systems. In:Olson GM, Jeffries R, eds. Proc. of the CHI 2006 Extended Abstracts on Human Factors in Computing Systems. New York:ACM, 2006. 1097-1101.[doi:10.1145/1125451.1125659]
    [8] Oh J, Park S, Yu H, Song M, Park ST. Novel recommendation based on personal popularity tendency. In:Cook DJ, Pei J, Wang W, Zaiane OR, Wu XD, eds. Proc. of the Int'l Conf. on Data Mining. Vancouver:IEEE Computer Society, 2011. 507-516.[doi:10. 1109/ICDM.2011.110]
    [9] Yin HZ, Cui B, Li J, Yao JJ, Chen C. Challenging the long tail recommendation. In:Alonso G, Cetintemel U, Dalvi N, Freire J, Korth H, Sacan A, Tatbul N, Tung A, eds. Proc. of the VLDB Endowment. Istanbul:VLDB Endowment. 2012. 896-907.[doi:10. 14778/2311906.2311916]
    [10] Onuma K, Tong HH, Faloutsos C. TANGENT:A novel, "Surprise me", recommendation algorithm. In:Elder JF IV, Fogelman-Soulie F, Flach PA, Zaki MJ, eds. Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York:ACM Press, 2009. 657-666.[doi:10.1145/1557019.1557093]
    [11] Nakatsuji M, Fujiwara Y, Tanaka A, Uchiyama T, Fujimura K, Ishida, T. Classical music for rock fans:Novel recommendations for expanding user interests. In:Huang J, Koudas N, Jones GJF, Wu XD, Collins-Thompson K, An AJ, eds. Proc. of the ACM Int'l Conf. on Information and Knowledge Management. New York:ACM Press, 2010. 949-958.[doi:10.1145/1871437.1871558]
    [12] Kawamae N. Serendipitous recommendations via innovators. In:Crestani F, Marchand-Maillet S, Chen HH, Efthimiadis EN, Savoy J, eds. Proc. of the Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York:ACM Press, 2010. 218-225.[doi:10.1145/1835449.1835487]
    [13] Zhang Y C, Seaghdha DO, Quercia D, Jambor T. Auralist:Introducing serendipity into music recommendation. In:Adar E, Teevan J, Agichtein E, Maarek Y, eds. Proc. of the Int'l Conf. on Web Search and Data Mining. New York:ACM Press, 2012. 13-22.[doi:10.1145/2124295.2124300]
    [14] Vargas S, Castells P. Rank and relevance in novelty and diversity metrics for recommender systems. In:Mobasher B, Burke RD, Jannach D, Adomavicius G, eds. Proc. of the ACM Conf. on Recommender Systems. New York:ACM Press, 2011. 109-116.[doi:10.1145/2043932.2043955]
    [15] Yu Q, Peng ZY, Hong L, Liu B, Peng HP. Novel community recommendation based on a user-community total relation. In:Bhowmick SS, Dyreson CE, Jensen CS, Lee ML, Muliantara A, Thalheim B, eds. Proc. of the Int'l Conf. on Database Systems for Advanced Applications. Bali:Springer-Verlag, 2014. 281-295.[doi:10.1007/978-3-319-05813-9_19]
    [16] Herlocker JL, Konstan JA, Terveen LG, Riedl JT. Evaluating collaborative filtering recommender systems. ACM Trans. on Information Systems, 2004,22(1):5-53.[doi:10.1145/963770.963772]
    [17] Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. The New England Journal of Medicine, 2007,357(4):370-379.[doi:10.1056/NEJMsa066082]
    [18] Singla P, Richardson M. Yes, there is a correlation:-from social networks to personal behavior on the Web. In:King I, Baeza-Yates, RA, eds. Proc. of the Int'l Conf. on World Wide Web. New York:ACM Press, 2008. 655-664.[doi:10.1145/1367497.1367586]
    [19] Ziegler CN, Lausen G, Schmidt-Thieme L. Taxonomy-Driven computation of product recommendations. In:Grossman DA, Gravano L, Zhai CX, Herzog O, Evans DA, eds. Proc. of the ACM Int'l Conf. on Information and Knowledge Management. New York:ACM Press, 2004. 406-415.[doi:10.1145/1031171.1031252]
    [20] Liu JG, Zhou T, Wang BH. Progress of the personalized recommendation systems. Progress of Nature and Science, 2009,19(1):1-15(in Chinese with English abstract).[doi:10.3321/j.issn:1002-008X.2009.01.001]
    [21] Ma H, Yang HX, Lyu MR, King I. Sorec:Social recommendation using probabilistic matrix factorization. In:Shanahan JG, Amer-Yahia S, Manolescu I, Zhang Y, Evans DA, Kolcz A, Choi KS, Chowdhury A, eds. Proc. of the ACM Int'l Conf. on Information and Knowledge Management. New York:ACM Press, 2008. 931-940.[doi:10.1145/1458082.1458205]
    [22] Hu X, Meng XW, Zhang YJ, Shi YC. Recommendation algorithm combing item features and trust relationship of mobile users. Ruan Jian Xue Bao/Journal of Software, 2014,24(8):1817-1830(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4491.htm[doi:10.13328/j.cnki.jos.004491]
    [23] Ma H. An experimental study on implicit social recommendation. In:Jones GJF, Sheridan P, Kelly D, Rijke MD, Sakai T, eds. Proc. of the Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York:ACM Press, 2013. 73-82.[doi:10.1145/2484028.2484059]
    [24] Leskovec J, Kleinberg J, Faloutsos C. Graphs over time:Densification laws, shrinking diameters and possible explanations. In:Grossman R, Bayardo RJ, Bennett KP, eds. Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York:ACM Press, 2005. 177-187.[doi:10.1145/1081870.1081893]
    [25] Buluc A, John R. G. Parallel sparse matrix-matrix multiplication and indexing:Implementation and experiments. SIAM Journal on Scientific Computing, 2012,34(4):C170-C191.[doi:10.1137/110848244]
    [26] Gustavson, Fred G. Two fast algorithms for sparse matrices:Multiplication and permuted transposition. ACM Trans. on Mathematical Software, 1978,4(3):250-269.[doi:10.1145/355791.355796]
    附中文参考文献:
    [20] 刘建国,周涛,汪秉宏.个性化推荐系统的研究进展.自然科学进展,2009,19(1):1-15.[doi:10.3321/j.issn:1002-008X.2009.01.001]
    [22] 胡勋,孟祥武,张玉洁,史艳翠.一种融合项目特征和移动用户信任关系的推荐算法.软件学报,2014,25(8):1817-1830. http://www.jos.org.cn/1000-9825/4491.htm[doi:10.13328/j.cnki.jos.004491]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

余骞,彭智勇,洪亮,万言历.基于用户邻域和主题的新颖性Web社区推荐方法.软件学报,2016,27(5):1266-1284

复制
分享
文章指标
  • 点击次数:3715
  • 下载次数: 5198
  • HTML阅读次数: 1339
  • 引用次数: 0
历史
  • 收稿日期:2015-01-09
  • 最后修改日期:2015-03-18
  • 在线发布日期: 2016-01-12
文章二维码
您是第19791776位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号