粗糙集的最优近似集
作者:
基金项目:

国家自然科学基金(61472056, 61272060); 重庆市自然科学基金(cstc2012jjA40032, cstc2013jcyjA40063)


Optimal Approximation Sets of Rough Sets
Author:
Fund Project:

National Natural Science Foundation of China (61472056, 61272060); Chongqing Natural Science Foundation of China (cstc2012jjA40032, cstc2013jcyjA40063)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    Pawlak教授提出的粗糙集理论是解决集合边界不确定的重要手段,他构建了边界不确定集合的两条精确边界,但没有给出用已有知识基来精确或近似地构建目标概念(集合)X的方法.在前期的研究中提出了寻找目标概念X的近似集方法,但并没有给出最优的近似集.首先,回顾了集合间的相似度概念和粗糙集的近似集Rλ(X)的构建方法,提出并证明了Rλ(X)所满足的运算性质.其次,找到了Rλ(X)比上近似集R(X)和下近似集R(X)更近似于目标概念Xλ成立的区间.最后,提出了R0.5(X)作为目标概念的最优近似集所满足的条件.

    Abstract:

    Rough set theory proposed by professor Pawlak is an important mean to solve the problem of uncertain boundary region. Pawlak constructed two crisp boundaries for the set with uncertainty boundary but did not give any exact or approximate methods of using the existing knowledge base to build an approximation set of a target concept .In order to solve this problem, in the previous researches a method for looking for this kind of approximation target concept (set) is proposed. However, that method does not give out a kind of optimal approximation set. In this paper, firstly, the concept of the similarity between the target set and its approximation set and the method for constructing approximation set of rough set are reviewed, and the operation properties are proposed and proved respectively. Secondly, an interval of λ is found, and in this interval Rλ(X) is more similar to the target concept X than the upper-approximation set R(X) or lower-approximation set R(X). Finally, the conditions of R0.5(X) as an optimal approximation set of the target concept X are proposed.

    参考文献
    [1] Li DY, Liu CY, Du Y, Han X. Artificial intelligence with uncertainty. Ruan Jian Xue Bao/Journal of Software, 2004,15(11):1583-1594 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/1853.htm
    [2] Liu J, Chen XP, Cai QS, Fan Y. Recognition structure of uncertainty: A unified framework for representation, reasoning and learning. Ruan Jian Xue Bao/Journal of Software, 2002,13(4):649-651(in Chinese with English abstract). http://www.jos.org.cn/10 00-9825/13/649.htm
    [3] Zadeh LA. Fuzzy sets. Information and Control, 1965,8(3):338-353. [doi: 10.1016/S0019-9958(65)90241-X]
    [4] Pawlak Z. Rough sets. Int'l Journal of Computer & Information Sciences, 1982,11(5):341-356.
    [5] Zhang L, Zhang B. The Theory and Applications of Problem Solving-Quotient Space Based Granular Computing. 2rd ed., Beijing: Tsinghua University Press, 2007 (in Chinese).
    [6] Yao Y. Interval sets and interval-set algebras. In: Proc. of the 8th IEEE Int'l Conf. on.Cognitive Informatics (ICCI 2009). IEEE, 2009. 307-314. [doi: 10.1109/COGINF.2009.5250723]
    [7] Molodtsov D. Soft set theory—first results. Computers & Mathematics with Applications, 1999,37(4-5):19-31. [doi: 10.1016/S089 8-1221(99)00056-5]
    [8] Wang GY, Yao YY, Yu H. A survey on rough set theory and its application. Chinese Journal of Computers, 2009,32(7):1229-1246 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2009.01229]
    [9] Sun BZ, Ma WM, Zhao HY. A fuzzy rough set approach to emergency material demand prediction over two universes. Applied Mathematical Modelling, 2013,37(10-11):7062-7070. [doi: 10.1016/j.apm.2013.02.008]
    [10] Luo QJ, Wang GJ. Roughness and fuzziness in quantales. Information Science, 2014,271(7):14-30. [doi: 10.1016/j.ins.2014.02. 105]
    [11] Tiwari SP, Srivastava AK. Fuzzy rough sets, fuzzy preorders and fuzzy topologies. Fuzzy Set and Systems, 2013,210(4):63-68. [doi: 10.1016/j.fss.2012.06.001]
    [12] Srinivas K, Rao GR, Govardhan A. Rough-Fuzzy classifier: A system to predict the heart disease by blending two different set theories. Arabian Journal for Science and Engineering, 2014,39(4):2857-2868. [doi: 10.1007/s13369-013-0943-1]
    [13] Inuiguchi M, Yoshioka Y, Kusunoki Y. Variable-Precision dominance-based rough set approach and attribute reduction. Int'l Journal of Approximate Reasoning, 2009,50(8):1199-1214. [doi: 10.1016/j.ijar.2009.02.003]
    [14] Xie G, Zhang JL, La KK, Yu L. Variable precision rough set for group decision-making: An application. Int'l Journal of Approximate Reasoning, 2007,49(2):331-343. [doi: 10.1016/j.ijar.2007.04.005]
    [15] Liu JNK, Hu Y, He Y. A set covering based approach to find the reduct of variable precision rough set. Information Sciences, 2014, 275(3):83-100. [doi: 10.1016/j.ins.2014.02.023]
    [16] Pawlak Z, Skowron A. Rough sets: Some extensions. Information Sciences, 2007,177(1):28-40. [doi: 10.1016/j.ins.2006.06.006]
    [17] Mi JS, Wu WZ, Zhang WX. Approaches to knowledge reduction based on variable precision rough set model. Information Sciences, 2004,159(3-4):255-272. [doi: 10.1016/j.ins.2003.07.004]
    [18] Zhang XY, Mo ZW. Variable precision rough sets. Pattern Recognition and Artificial Intelligence, 2004,17(2):151-155 (in Chinese with English abstract).
    [19] Qian YH, Zhang H, Sang YL, Liang JY. Multigranulation decision-theoretic rough sets. Int'l Journal of Approximate Reasoning, 2014,55(1):225-237. [doi: 10.1016/j.ijar.2013.03.004]
    [20] Zhang SG, Mi JS, Hu QH. Rough e-support vector regression model. Journal of Nanjing University (Natural of Science), 2013,49 (5):650-654 (in Chinese with English abstract).
    [21] Li SY, Qian YH. Attribute reduction algorithm based on multi-granularity rough decision. Journal of North University of China (Natural of Science), 2013,34(5):589-592 (in Chinese with English abstract).
    [22] Ziarko W. Probabilistic approach to rough sets. Int'l Journal of Approximate Reasoning, 2008,49(2):272-284. [doi: 10.1016/j.ijar. 2007.06.014]
    [23] Yao YY. Probabilistic rough set approximations. Int'l Journal of Approximate Reasoning, 2008,49(2):255-271. [doi: 10.1016/j.ijar. 2007.05.019]
    [24] Yao YY, Li X. Comparison of rough-set and interval-set models for uncertain reasoning. Fundamenta Informaticae, 1996,27(2): 289-298.
    [25] Yao YY. Two semantic issues in a probabilistic rough set model. Fundamenta Informaticae, 2011,108(3):249-265.
    [26] Zhang QH, Wang GY, Xiao Y. Approximation sets and rough set. Ruan Jian Xue Bao/Journal of Software, 2012,23(7):1745-1759 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4226.htm [doi: 10.3724/SP.J.1001.2012.04226]
    [27] Yang LB, Gao YY. Principles and Applications of Fuzzy Mathematics. 4th ed., Guangzhou: South China University of Technology Press, 2011 (in Chinese).
    [28] Wang GY. Rough Set Theory and Knowledge Discovery. Xi'an: Xi'an Jiaotong University Press, 2007 (in Chinese).
    [29] Wang GY, Mao DQ, Wu WZ, Liang JY. Uncertain knowledge representation and processing based on rough set. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010,22(5):541-544 (in Chinese with English abstract).
    [30] Miao DQ, Li DY, Yao YY, Wang GY, Zhang YP, Wu ZW, Liang JY, Yu DR, Wang RZ. Uncertainty and Granular Computing. Beijing: Science Press, 2011 (in Chinese).
    [31] Zhang WX, Wu WZ. An introduction and a survey for the studies of rough set theory. Fuzzy Systems and Mathematicas, 2000,14 (4):1-12 (in Chinese with English abstract).
    [32] Zhang QH, Xiao Y. Fuzziness of rough set with different granularity levels. Journal of Information and Computational Science, 2011,8(3):385-392.
    [33] Zhang QH, Xiao Y, Xing Y. The representation and processing of uncertain problems. Procedia Engineering, 2011,15:1958-1962. [doi: 10.1016/j.proeng.2011.08.365]
    [34] Zhang QH, Shen W. Research on attribute reduction algorithm with weights. Journal of Intelligent and Fuzzy Systems, 2014,27(2): 1011-1019. [doi: 10.3233/IFS-131062]
    [35] Zhang QH, Shen W, Yang QY. Attribute reduction in inconsistent disjunctive set-valued ordered decision information system. Journal of Computational Information Systems, 2012,8(12):5161-5167.
    [36] Zhang QH, Wang J, Wang GY, Yu H. The approximation set of a vague set in rough approximation space. Information Sciences, 2015,300:1-19. [doi: 10.1016/j.ins.2014.12.023]
    [37] Zhang QH, Wang J, Wang GY, Hu F. Approximation set of the interval set in Pawlak's Space. The Scientific World Journal, 2014, 2014:Article ID 317387. [doi: 10.1155/2014/317387]
    [38] Zhang QH, Xiao Y, Shen W. Knowledge acquisition based on fuzzy entropy. Journal of Information & Computational Science, 2012,9(14):4099-4107.
    [39] Zhang QH, Guo YL, Xiao Y. Attribute reduction based on approximation set of rough set. Journal of Computational Information Systems, 2014,10(16):6859-6866. [doi: 10.12733/jcis10998]
    [40] Xiao Y. The uncertainty measure of concept and its application in knowledge acquisition [MS. Thesis]. Chongqing: Chongqing University of Posts and Telecommunications, 2013.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张清华,薛玉斌,王国胤.粗糙集的最优近似集.软件学报,2016,27(2):295-308

复制
分享
文章指标
  • 点击次数:3683
  • 下载次数: 4995
  • HTML阅读次数: 1550
  • 引用次数: 0
历史
  • 收稿日期:2014-07-29
  • 最后修改日期:2015-02-09
  • 在线发布日期: 2016-02-03
文章二维码
您是第19987540位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号