社会化推荐系统研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60872051); 北京市教育委员会共建项目


Research on Social Recommender Systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,社会化推荐系统已成为推荐系统研究领域较为活跃的研究方向之一.如何利用用户社会属性信息缓解推荐系统中数据稀疏性和冷启动问题、提高推荐系统的性能,成为社会化推荐系统的主要任务.对最近几年社会化推荐系统的研究进展进行综述,对信任推理算法、推荐关键技术及其应用进展进行前沿概括、比较和分析.最后,对社会化推荐系统中有待深入研究的难点、热点及发展趋势进行展望.

    Abstract:

    Social recommender systems have recently become one of the hottest topics in the domain of recommender systems. The main task of social recommender system is to alleviate data sparsity and cold-start problems, and improve its performance utilizing users' social attributes. This paper presents an overview of the field of social recommender systems, including trust inference algorithms, key techniques and typical applications. The prospects for future development and suggestions for possible extensions are also discussed.

    参考文献
    相似文献
    引证文献
引用本文

孟祥武,刘树栋,张玉洁,胡勋.社会化推荐系统研究.软件学报,2015,26(6):1356-1372

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-04-25
  • 最后修改日期:2015-03-09
  • 录用日期:
  • 在线发布日期: 2015-06-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号