3D多尺度几何分析研究进展
作者:
基金项目:

国家自然科学基金(61402214, 41271422); 教育部高等学校博士学科点专项科研基金(20132136110002); 辽宁省博士科研启动基金(20121076); 辽宁省教育厅科学研究一般项目(L2011192, L2013406); 大连市科学技术基金计划(2012J21DW008, 2013J21DW027); 计算机软件新技术国家重点实验室开放基金(KFKT2011B09, KFKT2010B11); 江苏省图像处理与图像通信重点实验室开放基金(LBEK2011001);


Advances in Three-Dimensional Multiscale Geometrical Analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [78]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    3D多尺度几何分析是图像、视频和几何模型等数字可视媒体处理的技术基础,其目的在于高效地表示这些媒体中存在的点、线、面奇异.为此,依据不同变换捕获奇异的能力演进及其非线性逼近效率的提高,从2D图像多尺度几何分析的研究进展切入,着重阐述视频3D多尺度几何分析的发展,并将其归纳为3类:由2D基函数直接扩展的3D多尺度几何分析、基于3D基函数的3D多尺度几何分析和基于时空非局部相关性的3D多尺度几何分析,深入探讨了各种典型变换方法的主要思想、非线性逼近效率、计算复杂度、优势和不足.同时,概要介绍了数字几何模型的3D多尺度几何分析研究进展.在此基础上,对3D多尺度几何分析的未来发展趋势进行了展望.

    Abstract:

    Three-Dimensional (3D) multiscale geometrical analysis is the technological fundamental for the processing of digital visual media, such as images, videos, and geometrical models. Its objective is to efficiently represent the point singularity, curve singularity, as well as surface singularity presented in those visual media. This study first reviews the research advances in two-dimensional (2D) multiscale geometrical analysis. It then elaborates on the development of 3D multiscale geometrical analysis for video according to the capability evolution in capturing singularity and nonlinear approximation efficiency improvement of various transforms. State-of-the-Art 3D multiscale geometrical analysis is classified into three categories: the extended multiscale geometrical analysis from 2D basis functions, the multiscale geometrical analysis based on 3D basis function, and the multiscale geometrical analysis based on spatiotemporal non-local correlation. The basic ideas of typical transforms are thoroughly discussed subsequently, and so are their nonlinear approximation efficiency, computational complexity, advantages, and disadvantages. Meanwhile, this study also presents a general review on the development of the 3D multiscale geometrical analysis for geometrical models. Based on the study above, the development trend of the 3D multiscale geometrical analysis is forecast in the near future.

    参考文献
    [1] Gao W, Zhao DB, Ma SW. Principles of Digital Video Coding Technology. Beijing: Science Press, 2010 (in Chinese).
    [2] Jiao LC, Hou B, Wang S, Liu F. Image Multiscale Geometric Analysis: Theory and Applications—Beyond Wavelets. Xi'an: Xi Dian University Publish House, 2008 (in Chinese).
    [3] Donoho DL, Vetterli M, De Vore RA, Daubechies I. Data compression and harmonic analysis. IEEE Trans. on Information Theory, 1998,44(6):2435-2476. [doi: 10.1109/18.720544]
    [4] Jiao LC, Tan S. Development and prospect of image multiscale geometric analysis. Acta Electronica Sinica, 2003,31(Z1):1975- 1981 (in Chinese with English abstract).
    [5] Wang XH, Sun Q, Song CM, Liu D. Advances in image coding based on multiscale geometric analysis. Journal of Computer Research and Development, 2010,47(6):1132-1143 (in Chinese with English abstract).
    [6] Candès EJ. Ridgelets: Theory and applications [Ph.D. Thesis]. Stanford: Stanford University, 1998.
    [7] Candès EJ, Donoho DL. Ridgelets: A key to higher-dimensional intermittency? Philosophical Trans. of the Royal Society of London Series A, 1999,357(1760):2495-2509. [doi: 10.1098/rsta.1999.0444]
    [8] Candès EJ, Donoho DL. Curvelets: A surprisingly effective nonadaptive representation for objects with edges. In: Cohen A, Rabut C, Schumaker LL, eds. Proc. of the Int'l Conf. on Curves and Surfaces. Nashville: Vanderbilt University Press, 1999. 105-120. [doi: 10.1.1.161.9294]
    [9] Candès EJ, Donoho DL. Curvelets and curvilinear integrals. Journal of Approximation Theory, 2001,113(1):59-90. [doi: 10.1006/ jath.2001.3624]
    [10] Pennec EL, Mallat S. Bandelet image approximation and compression. SIAM Journal of Multiscale Modeling and Simulation, 2005,4(3):992-1039. [doi: 10.1137/040619454]
    [11] Pennec EL, Mallat S. Sparse geometric image representation with bandelets. IEEE Trans. on Image Processing, 2005,14(4): 423-438. [doi: 10.1109/TIP.2005.843753]
    [12] Huo XM, Chen JH. JBEAM: Multiscale curve coding via beamlets. IEEE Trans. on Image Processing, 2005,14(11):1665-1677. [doi: 10.1109/TIP.2005.857273]
    [13] Velisavljević V, Beferull-Lozano B, Vetterli M, Dragotti PL. Directionlets: Anisotropic multidirectional representation with separable filtering. IEEE Trans. on Image Processing, 2006,15(7):1916-1933. [doi: 10.1109/TIP.2006.877076]
    [14] Do MN, Vetterli M. Contourlets: A new directional multiresolution image representation. In: Friedlander B, ed. Proc. of the Asilomar Conf. on Signals, Systems and Computers. Los Alamitos: IEEE Computer Society Press, 2002. 497-501. [doi: 10.1109/ ACSSC.2002.1197232]
    [15] Easley G, Labate D, Lim WQ. Sparse directional image representations using the discrete shearlet transform. Applied and Computational Harmonic Analysis, 2008,25(1):25-46. [doi: 10.1016/j.acha.2007.09.003]
    [16] Lu YM, Do MN. Multidimensional directional filter banks and surfacelets. IEEE Trans. on Image Processing, 2007,16(4):918-931. [doi: 10.1109/TIP.2007.891785]
    [17] Watson AB. The cortex transform: rapid computation of simulated neural images. Computer Vision, Graphics, and Image Processing, 1987,39(3):311-327. [doi: 10.1016/S0734-189X(87)80184-6]
    [18] Simoncelli EP, Freeman WT, Adelson EH, Heeger DJ. Shiftable multiscale transforms. IEEE Trans. on Information Theory, 1992, 38(2):587-607. [doi: 10.1109/18.119725]
    [19] Meyer FG, Coifman RR. Brushlets: A tool for directional image analysis and image compression. Applied and Computational Harmonic Analysis, 1997,4(2):147-187. [doi: 10.1006/acha.1997.0208]
    [20] Kingsbury N. Complex wavelets for shift invariant analysis and filtering of signals. Applied and Computational Harmonic Analysis, 2001,10(3):234-253. [doi: 10.1006/acha.2000.0343]
    [21] Do MN. Directional multiresolution image representations [Ph.D. Thesis]. Swiss Federal Institute of Technology, 2001.
    [22] Donoho DL. Orthonomal ridgelets and linear singularities. SIAM Journal on Mathematical Analysis, 2000,31(5):1062-1099. [doi: 10.1137/S0036141098344403]
    [23] Candès EJ, Demanet L, Donoho D, Ying L. Fast discrete curvelet transforms. Multiscale Modeling & Simulation, 2006,5(3): 861-899. [doi: 10.1137/05064182X]
    [24] Bamberger RH, Smith MJT. A filter bank for the directional decomposition of images: Theory and design. IEEE Trans. on Signal Processing, 1992,40(4):882-893. [doi: 10.1109/78.127960]
    [25] Nguyen TT, Oraintara S. A directional decomposition: Theory, design, and implementation. In: Antoniou A, Trajković L, eds. Proc. of the IEEE Int'l Symp. on Circuits and Systems. Los Alamitos: IEEE Computer Society Press, 2004. 281-284. [doi: 10. 1109/ISCAS.2004.1328738]
    [26] Yan CM, Guo BL, Yi M. Fast algorithm for nonsubsampled Contourlet transform. Acta Automatica Sinica, 2014,40(4):757-762. [doi: 10.3724/SP.J.1004.2014.00757]
    [27] Guo KH, Labate D. Optimally sparse multidimensional representation using shearlets. SIAM Journal on Mathematical Analysis, 2007,39(1):298-318. [doi: 10.1137/060649781]
    [28] Lim WQ. The discrete shearlet transform: A new directional transform and compactly supported shearlet frames. IEEE Trans. on Image Processing, 2010,19(5):1166-1180. [doi: 10.1109/TIP.2010.2041410]
    [29] Donoho DL. Wedgelets: Nearly minimax estimation of edges. The Annals of Statistics, 1999,27(3):859-897. [doi: 10.1214/aos/ 1018031261]
    [30] Lisowska A. Smoothlets—Multiscale functions for adaptive representation of images. IEEE Trans. on Image Processing, 2011, 20(7):1777-1787. [doi: 10.1109/TIP.2011.2108662]
    [31] Mallat S. Geometrical grouplets. Applied and Computational Harmonic Analysis, 2009,26(2):161-180. [doi: 10.1016/j.acha.2008. 03.004]
    [32] Mallat S, Peyré G. A review of Bandlet methods for geometrical image representation. Numerical Algorithms, 2007,44(3):205-234. [doi: 10.1007/s11075-007-9092-4]
    [33] Sweldens W. The lifting scheme: A construction of second generation wavelets. SIAM Journal on Mathematical Analysis, 1998, 29(2):511-546. [doi: 10.1137/S0036141095289051]
    [34] Taubman D. Adaptive, non-separable lifting transforms for image compression. In: Ozawa S, Sakai Y, eds. Proc. of the Int'l Conf. on Image Processing. Los Alamitos: IEEE Computer Society Press, 1999. 772-776. [doi: 10.1109/ICIP.1999.817221]
    [35] Gerek ÖN, Çetin AE. A 2-D orientation-adaptive prediction filter in lifting structures for image coding. IEEE Trans. on Image Processing, 2006,15(1):106-111. [doi: 10.1109/TIP.2005.859369]
    [36] Chang CL, Girod B. Direction-Adaptive discrete wavelet transform for image compression. IEEE Trans. on Image Processing, 2007,16(5):1289-1302. [doi: 10.1109/TIP.2007.894242]
    [37] Ding WP, Wu F, Wu XL, Li SP, Li HQ. Adaptive directional lifting-based wavelet transform for image coding. IEEE Trans. on Image Processing, 2007,16(2):416-427. [doi: 10.1109/TIP.2006.888341]
    [38] Tanaka Y, Hasegawa M, Kato S, Ikehara M, Nguyen TQ. Adaptive directional wavelet transform based on directional prefiltering. IEEE Trans. on Image Processing, 2010,19(4):934-945. [doi: 10.1109/TIP.2009.2038820]
    [39] Claypoole RL, Davis GM, Sweldens W, Baraniuk RG. Nonlinear wavelet transforms for image coding via lifting. IEEE Trans. on Image Processing, 2003,12(12):1449-1459. [doi: 10.1109/TIP.2003.817237]
    [40] Boulgouris NV, Tzovaras D, Strintzis MG. Lossless image compression based on optimal prediction, adaptive lifting, and conditional arithmetic coding. IEEE Trans. on Image Processing, 2001,10(1):1-14. [doi: 10.1109/83.892438]
    [41] Muramatsu S, Han DD, Kobayashi T, Kikuchi H. Directional lapped orthogonal transform: Theory and design. IEEE Trans. on Image Processing, 2012,21(5):2434-2448. [doi: 10.1109/TIP.2011.2182055]
    [42] Muramatsu S, Han DD, Kobayashi T, Kikuchi H. Three-Dimensional subband coding of video. IEEE Trans. on Image Processing, 1995,4(2):125-139. [doi: 10.1109/83.342187]
    [43] Kim BJ, Xiong Z, Pearlman WA. An embedded wavelet video coder using three-dimensional set partitioning in hierarchical trees (SPIHT). In: Storer JA, Cohn M, eds. Proc. of the Data Compression Conf. Los Alamitos: IEEE Computer Society Press, 1997. 251-260. [doi: 10.1109/DCC.1997.582048]
    [44] Kim BJ, Xiong ZX, Pearlman WA. Low bit-rate scalable video coding with 3D set partitioning in hierarchical trees (3D SPIHT). IEEE Trans. on Circuits and Systems for Video Technology, 2000,10(8):1374-1387. [doi: 10.1109/76.889025]
    [45] Chen YW, Pearlman W. Three-Dimensional subband coding of video using the zero-tree method. In: Ansari R, Smith MJT, eds. Proc. of the SPIE 2727, Visual Communications and Image Processing. Bellingham: SPIE Press, 1996. 1302-1309. [doi: 10.1117/12.233203]
    [46] Xu JZ, Xiong ZX, Li SP, Zhang YQ. Three-Dimensional embedded subband coding with optimized truncation (3-D ESCOT). Applied and Computational Harmonic Analysis, 2001,10(3):290-315. [doi: 10.1006/acha.2000.0345]
    [47] Mehrseresht N, Taubman D. Spatial scalability and compression efficiency within a flexible motion compensated 3D-DWT. In: Kot A, Gray R, Ma KK, eds. Proc. of the Int'l Conf. on Image Processing. Los Alamitos: IEEE Computer Society Press, 2004. 1325-1328. [doi: 10.1109/ICIP.2004.1419743]
    [48] Mehrseresht N, Taubman D. A flexible structure for fully scalable motion-compensated 3-D DWT with emphasis on the impact of spatial scalability. IEEE Trans. on Image Processing, 2006,15(3):740-753. [doi: 10.1109/TIP.2005.860619]
    [49] Secker A, Taubman D. Lifting-Based invertible motion adaptive transform (LIMAT) framework for highly scalable video compression. IEEE Trans. on Image Processing, 2003,12(12):1530-1542. [doi: 10.1109/TIP.2003.819433]
    [50] Ohm JR. Three-Dimensional subband coding with motion compensation. IEEE Trans. on Image Processing, 1994,3(5):559-57l. [doi: 10.1109/83.334985]
    [51] Hsiang ST. High scalable subband/wavelet image and video coding [Ph.D. Thesis]. New York: Rensselaer Polytechnic Institute, 2002.
    [52] Taubman D, Zakhor A. Multirate 3-D subband coding of video. IEEE Trans. on Image Processing, 1994,3(5):572-588. [doi: 10. 1109/83.334984]
    [53] Wang A, Xiong ZX, Chou PA, Mehrotra S. Three-Dimensional wavelet coding of video with global motion compensation. In: Storer JA, Cohn M, eds. Proc. of the Data Compression Conf. Los Alamitos: IEEE Computer Society Press, 1999. 404-413. [doi: 10.1109/DCC.1999.755690]
    [54] Ohm JR. Advanced packet video coding based on layered VQ and SBC techniques. IEEE Trans. on Circuits Systems and Video Technology, 1993,3(3):208-221. [doi: 10.1109/76.224231]
    [55] Choi SJ, Woods JW. Motion-Compensated 3-D subband coding of video. IEEE Trans. on Image Processing, 1999,8(2):155-167. [doi: 10.1109/83.743851]
    [56] Pesquet-Popescu B, Bottreau V. Three-Dimensional lifting schemes for motion compensated video compression. In: Mathews VJ, Swindlehurst AL, eds. Proc. of the Int'l Conf. on Acoustics, Speech and Signal Processing. Los Alamitos: IEEE Computer Society Press, 2001. 1793-1796. [doi: 10.1109/ICASSP.2001.941289]
    [57] Hsiang ST, Woods JW. Invertible three-dimensional analysis/synthesis system for video coding with half-pixel-accurate motion estimation. In: Aizawa K, Stevenson RL, Zhang YQ, eds. Proc. of the SPIE 3653, Visual Communications and Image Processing. Bellingham: SPIE Press, 1999. 537-546. [doi: 10.1117/12.334704]
    [58] Woods JW, Chen PS. Improved MC-EZBC with quarter-pixel motion vectors. MPEG2002/M8366: Fairfax, MPEG: ISO/IEC JTC1/SC29/WG11, 2002. 1-16.
    [59] Chen PS, Woods JW. Bidirectional MC-EZBC with lifting implementation. IEEE Trans. on Circuits and Systems for Video Technology, 2004,14(10):1183-1194. [doi: 10.1109/TCSVT.2004.833165]
    [60] Secker A, Taubman D. Motion-Compensated highly scalable video compression using an adaptive 3D wavelet transform based on lifting. In: Pitas I, Venetsanopoulos AN, Pappas TN, eds. Proc. of the IEEE Int'l Conf. on Image Processing. Los Alamitos: IEEE Computer Society Press, 2001. 1029-1032. [doi: 10.1109/ICIP.2001.958672]
    [61] Secker A, Taubman D. Highly scalable video compression using a lifting-based 3D wavelet transform with deformable mesh motion compensation. In: Tekalp AM, Reibman A, Knox K, eds. Proc. of the IEEE Int'l Conf. on Image Processing. Los Alamitos: IEEE Computer Society Press, 2002. 749-752. [doi: 10.1109/ICIP.2002.1039080]
    [62] Secker A, Taubman D. Highly scalable video compression with scalable motion coding. IEEE Trans. on Image Processing, 2004, 13(8):1029-1041. [doi: 10.1109/TIP.2004.826089]
    [63] Turaga DS, van der Schaar M, Andreopoulos Y, Munteanu A, Schelkens P. Unconstrained motion compensated temporal filtering (UMCTF) for efficient and flexible interframe wavelet video coding. Signal Processing: Image Communication, 2005,20(1):1-19. [doi: 10.1016/j.image.2004.08.006]
    [64] Song CM, ??卮???潈琬椠潚湨?敮獧琠楆浙愮琠楖潩湳?畡獬楬湹朠?汯潳睳?扥慳湳搠?獣档極晲瑡?浹攠瑯桦漠摭?晴潩牯?眠慶癥散汴敯瑲?扩慮猠敯摶?浲潣癯業湰杬?灴楥挠瑷畡牶敥?捥潴搭楢湡杳???????呡牢慬湥猠??潤湥??浣慯杤敩?偧爮漠捊敯獵獲楮湡杬????ぃは???????????????嬨搹漩椺?′?????????????????崳?戴爯?季??崴??椮洸′?匭?′倸慝爼止??坛?‵坝愠癌敵汯攠瑌??慌獩攠摊?洠潌癩椠湓材?瀠楚捨瑵畡牮敧?捚潑搬椠湚杨?畮獧椠湙村?猠桍楯晴瑩?楮渠癣慯牭楰慥湮瑳?浴潥瑤椠潬湩?整獩瑮楧洠慷瑡楶潥湬?楴渠?睮慤瘠敩汴敳琠?摰潰浬慩楣湡??卯楮朠湩慮氠?偩牤潥捯攠獣獯楤湩杮???浉慮机攠??潩洠浍畁湔椬挠慄瑡楳漠湄??㈠づつ??ㄠ??????????????孅摅潅椠???〧?ㄠぃ???匮??????????づつ?ち?ち????嵸?扯爮?孌??崠?卬潡湭杩?????坉慅湅杅?塃?????湥敲眠?獯捣慩汥慴批氠敐?癥楳摳攬漠′洰漰琱椮漠渳?攵猭琳椶洸愮琠楛潤湯?猺挠栱攰洮攱?椰渹?瑉桃敍?眮愲瘰攰氱攮琱′搳漷洷愳椲湝???栾楛渶收獝攠??潩略牲湬愠汍?漠晇??潯浤瀠畂琮攠牖獩????っ?????ㄠ????ㄠ?????????業湰??桳楡湴敥獤攠?睩楦瑴桥??湷条汶楥獬桥?愠扴獲瑡牮慳捦瑯???戮爠?孩??嵡?匠潐湲杯?????剮敧猺攠慉牭捡桧?漠湃?獭捭慵汮慩扣污整?癯楮搬攠漲‰挰漴搬椱渹木?戩愺猵收搱?漵渷‵洮甠汛瑤楯獩挺愠氱攰?愱渰愱氶礯獪椮獩?孡偧桥???‰吴栮攰猵椮猰崰??丼慢湲樾楛渶朷??乘慵渠橊楚測朠?啩湯楮癧攠牚獘椬琠祌???ぐ????楡湮??桙楑渮攠獍敥?睯楲瑹栭??湮杳汴楲獡桩?慥扤猠琳牄愠捷瑡???扥牴?孴??嵮??楯?塭??乯敲眠?物敤獥畯氠瑣獯?潩普?瀠桷慩獴敨?獵桴椠晢瑯極湮杤?楲湹?瑥桦敦?督慴癳攮氠敉瑅?獅瀠慔捲敡???????千楩杲湣慵汩?偳爠潡据敤猠獓楹湳杴??敳琠瑦敯牲???つづ???づ????????????‰嬲搬漱椲??ㄩ????????匮倠???ど?????????崯?扃牓?孔??崰‰?椮?堰?′匳挱慝氼慢扲氾敛?瘸楝搠敌潵?挠潌洬瀠牗敵猠獆椬漠湌?瘠楓慐?漠癘敩牯据潧洠灚汘攬琠敚?浵潡瑮楧漠湚?挮漠流灤敶湡獮慣瑥敤搠?睯慴癩敯汮攠瑴?捲潥摡楤湩杮??卦楯杲渠愳汄?偷牡潶捥敬獥獴椠湶杩???洠慣杯敤??潧洮洠畓湩楧据慡瑬椠潐湲???びび?????????????????孩摣潡楴??????????樱?椨洷愩机收?㈱???????つは?崺?戱爰?嬱??崶??渮摩牭敡潧灥漮甲氰漰猴?夰???田渴瑝攼慢湲甾?????慐牡扵愠片椬攠湔????噥慲渠?搬攠牐?即捱桵慥慴爭?????潣牵渠敂氬椠獈????卡据桳攠汈欮攠湍獯?偩???湣??慰湥摮?浡潴瑩楯潮渠?据潤洠灳散湡獬慡瑢敩摬?瑴敹洠灩潮爠慬汩?晴楩汮瑧攭牢楡湳来??卶楩杤湥慯氠?偯牤潩据敧献猠楓湩杧???洠慐杲敯??潳浳浩畮湧椺挠慉瑭楡潧湥???ねね?????????????????嬹搨漷椩?‵????????橛?楯浩愺朠攱?金???????どね?嵧?戮爲?嬰??崰‵?渰搰爳敝漼灢潲甾汛漷猰?夠???畧渠瑂攬愠湘畵????嘠慗湵?摆攬爠??畮睧攠牓慑?????潓牐渮攠汅楮獥??偹???即捴桲敩汢歵整湥獤?偵???潴浥瀠汳整瑥数?琠漨?佄癕攩爠捩潮洠灬汩敦瑴敩?摧椠獢捡牳敥瑤攠?睯慴癩敯汮攠瑣?瑭牰慥湮獳晡潴牥浤猠??呤桥敯漠牣祯?慩湮摧?愠灉灮氺椠捇慲瑡楹漠湒猬???????吠牥慤湳献??潲湯?匮椠杯湦愠汴?健爠潉捅故獅猠楉湮杴??㈠ぃは???????????????????孳摩潮楧???は?ㄠ?ぬ??呩却偯?呼?ぉ??????ね?嵵?扥牲?孓?っ嵩?却潹渠材?????圠愲渰朰?堮??′制攷猭攲愲爷挰栮?灛牤潯杩爺攠猱猰?椱渱‰瘹椯摉敃潉?洮漲琰椰漴渮?攴猲琱椵洵愰瑝椼潢湲 ̄瑛攷挱桝渠楇煩畲敯獤?楂測?瑈桡敮?睓愮瘠敏汰整瑩?摵潭洠慵楰湤???栠楦湯敲猠敭??潩畯牮渭慣汯?潰晥??潡浴灥畤琠敬物獦???で??????ㄠこ?????????????楩湮??桌楥湴整獥敲?眬椠琲栰‰?測朱氲椨猲栩?愱戵猰琭爱愵挳琮???扯物?嬠??崮?圱愱渰朹?塌???匲漰渰朴?????匷挴慝氼慢扲氾敛??浝愠杘敩?慮湧搠?噑椬搠敗潵??漬搠楘湵朠???攠楌橩椠湓材??博捨楡敮湧挠教?倮爠敂獡獲???ぬ????楴湩??栠楷湡敶獥敬???扴牲?孮??嵯?呭椠汦汯楲攠牨????偹攠獳煣畡敬瑡?偬潥瀠敶獩捤略????癤慩湮?搮攠牉?区挠桶慡慮爠???????慡湡摲?浍漬琠楥潤渮?捐潲浯灣攮渠獯慦琠整摨?琠敐浩灣潴牵慲汥?獃瑯牤畩据瑧甠牓敹獭?昮漠牌?獳挠慁汬慡扭汩整?癳椺搠敉潅?捅漠摃楯湭杰???????呣物慥湴獹??潲湥??洬愠朲攰‰倴爮漠挲攳猷猭椲渴朲???ひ??????????????水?????孚搬漠楗??????????吮?偂??ぢづ????????嵮?戠牢?孳??崠″?瑄琠慷?剶???桴愠湣扯慤物楮?????潥瑭楥漮渠??潅浅瀠敔湲獡慮瑳攮搠?瑮攠浃灩潲牣慵汩?晳椠汓瑹敳牴楥湭杳?扡慮獤攠摖?潤湥?琠桔敥???呯???湹??伲琰琰攷爬猱琷攨渹???′匵眶椭渱搲氶改栮甠牛獤瑯????‰攮搱猱??倯牔潃捓??漮昲‰琰样攮???????渼瑢?氾??漴湝映??潩湥??挠潍甬猠瑇楩捲獯??卂瀮攠敁挠桭?慴湩摯?匭楣杯湭慰汥?偳牡潴捥敤猠獯楲湴杨???潮獡??汴慲浡楮瑳潦獯????????潥浮灥畲瑧敹爭?卯潮捣楥敮瑴祲?側物敯獮猠???びぴ????ぴ?????????嬠摚潃椬???ね???ち?????博卨偡???ず?????????嵲?扣爮?孯??嵴?乥椠捉潅畅汅椠湉?????慗瑯瑲慫癳敨汯汰椠?????楬?坩???慩獡猠潓????偬漠灐慲瑯??????畧渮琠?????浬慡杭敩?獯敳焺甠敉湅捅故?捃潯摭楰湵杴?畲猠楓湯杣?浥潴瑹椠潐湲?捳潳洬瀠攲渰猰愶琮攠搳?猱甭戳戹愴渮搠?摤敯捩漺洠瀱漰献椱琱椰漹港???湐?′匰攰稶愮渲??????愼杢敲渾摛椷樵歝?剆???敲摬猠??倠片潩捲??漠時?琠案敡??漭瑐楥潬渠??湣慵汲祡獴楥猠?慯湴摩??洭慣杯敭?卥敮煳畡整湥捤攠?偲牴潨捯敧獯獮楡湬朠??乤敥睯?奴潲牡歮??卯灲牭楳渮朠敉牮?嘠敓牴汯慲来?????????????????字搬漠楥??????はっ??????????????至????彥?嵳?扯牮?孃??嵦??潌潯摳攠敁楬?????畳戺漠楉獅?????潭摰極湴来?椠浓慯杣敩?獴敹焠畐敲湥捳敳?椠渲琰攰渷献椠琱椳攭猲′愮氠潛湤杯?洺漠琱椰漮渱?琰爹愯橄敃捃琮漲爰椰攷献?申獝椼湢杲 ̄??????偬?煥畲慬渠瑍椬稠慇瑩楲潯湤???渠???潥癷椠止?????散摴??偮牡潬捬??潭景?瑩桯敮??湯瑭?汥??潡湴晥??潯湲??浯慧杯敮?偬爠潴捲敡獮獳楦湯杲???潯獲??汩慤浥楯琠潣獯????????漺洠灋畵瑨攠牁?匠潈捵楡敮瑧礠?偆爬攠獥獤??ㄠ???????て??????孅摅潅椠???〧?ㄠ?は?????偮?????????????嵰?扥牣?嬠??嵤?塓楩潧湮条?????婣桥畳??????慌?乳丠??婡桭敩湴杯?夺???卅捅愠汃慯扭汰敵?癥楲搠敓潯?捩潥浴灹爠敐獲獥楳潳測?昲爰愰洷攮眠漶父欵?眶椶琸栮?慛摤慯灩琺椠瘱攰?漱爱椰改港瑉慃瑁楓潓湐愮氠′洰田氷琮椳父攵猹漹氵畝琼楢潲渾?琷爷慝渠獌晩潵爠浄?愠湆摬?湥潲湬甠湍椮映潍牯浴?摯楮爭敁捤瑡楰潴湩慶汥?晴楲污瑮敳牦扯慲湭歳?摢敡獳楥杤渠???????呥牸愭湷獥??潨湴??椠牧捲畡楰瑨獳?愠湉摮?匠祂獩瑬敧浩獮?晁漬爠?噡楲摣敥潬?呩敮挠桍湗漬氠潓来祲??木こ??????????ㄠこ????ひ????嬠摥潤楳???ひ??????吠?卨噥吠??ぴ?ㄠ???????び嵩?扮爠?孯??崮??楯畳??????楴湯?场匠??偅慅甠汃????婴桥慲渠杓?????敹渠材??坳??传瀲琰椱洳愮氠?挸漱洭瀱爹攰献猠楛潤湯?瀺氠愱渰攮?昱漰爹?攠晄晃楃挮椲攰渱琳?瘲椳摝攼潢?挾潛搷椸湝朠???????呩牭慡渠獋??潓湴??浰慬来敭?偮爠潊捂攬猠獂楯湶来????ㄠ???っ??ち?????????????孭摰潥楮???づ?ㄠ?ふ??呡?偤??ね???㈠??????崠?扅牅?嬠??嵡?女椮渠杯??塃???敵浮慩湣敡瑴?????愠渱搹??水?有?猲???????搸椹猴挭爱改琰攱?挠畛牤癯敩氺攠琱‰琮爱愱渰猹是潔牃浏???渱??倴愮瀵愸搲愸欹椹獝??? ̄?愷椹湝攠?????啴湩獮敩牡?????敲摣獨??偤爠潍捔??潍晵?瑴桩攭?卥偳?????????坡慣癫敷污敲瑤猠?塩????散汯汤楩湮杧栮愠浉??匠偃???偬牡数獰獡??水?づ?????????孯摦漠楴??ㄠぉ???ㄠ???㈧?????て?崠?扮爠?孭??嵥?乐敲杯楣?偳即???愮戠慌瑯敳????????摳椺猠捉牅故瑅攠?獯桭数慵牴汥敲琠?瑯牣慩湥獴晹漠牐浲?慳湳搬?瘱椹搹攵漮?瀵父漳挭攵猶猶椮渠杛??????‰吮爱愱渰猹??潃湉??洱愹朹攵?倵爳漷挵攴猱獝椼湢杲??劳??㈠???????金??????????孯摮漠楳???ど??ㄠび??呬?偢?????????????嵮?戠牢?孳?つ?嵯??畷潡??????愠扃慯瑭数????传灓瑣楩浥慮汣汥礬?猲瀰愰爲猬攲????愺瀱瀱爵漭砱椱洷愠琨楩潮渠獃?畩獮楥湳来?獷桩整慨爠汅敮瑧?物敳灨爠敡獢敳湴瑲慡瑣楴漩渮猼???汛攸挱瑝爠潙湡楮捧?剘敇猬攠慒牡捭档??湮湤潲畡湮挠敋洮攠湓瑣獡?楡湢??愠瑷桡敶浥慬瑥楴挠慶汩?卥捯椠散湯捤敩獮???び?の?ㄠ???ち???????????孤搠潨楩???ひ??????攠牭慯??は?????????嵡?扩牯?嬮ㄠぉ?嵅?匠敔汲敡獮湳椮挠歯??坉???楥??奲??噥楳摳敩潮?搬攠渲漰椰猰椬渹木‵甩猺椷渷朸?祝??愮渠摛????搠由愰氮?琱爰改支?挳漮洸瀴氱攵砱?睝愼癢敲氾敛琸′瑝爠慐湡獲晫漠版浗猬???湭.1996.0015]
    [121] Schröder P, Sweldens W. Spherical wavelets: Efficiently representing functions on the sphere. In: Cook R, ed. Proc. of the Computer Graphics Proceedings. New York: ACM Press, 1995. 161-172. [doi: 10.1145/218380.218439]
    [122] Schröder P, Sweldens W. Spherical wavelets: Texture processing. In: Hanrahan P, Purgathofer W, eds. Proc. of the Eurographics Workshop on Rendering Techniques. New York: Springer-Verlag, 1995. 252-263. [doi: 10.1.1.48.8557]
    [123] Li J, Song RX, Ye MJ, Liang YY, Qi DX. Orthogonal reconstruction of 3D model based on V-system over triangular domain. Chinese Journal of Computers, 2009,32(2):193-201 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2009.00193]
    [124] Qi DX, Song RX, Li J. Non-Continuous Orthogonal Function—U-Systems, V-System, Multi-Wavelet and Its Applications. Beijing: Science Press, 2011 (in Chinese).
    [125] Huang C, Yang LH, Qi DX. A new class of multi-wavelet bases: V-System. Acta Mathematica Sinica, English Series, 2012,28(1): 105-120. [doi: 10.1007/s10114-012-9424-8]
    [126] Song RX, Wang XC, Ou MF, Li J. The structure of V-system over triangulated domains. In: Chen FL, Jüttler B, eds. Proc. of the Advances in Geometric Modeling and Processing. LNCS 4975, Berlin: Springer-Verlag, 2008. 563-569. [doi: 10.1007/978-3-540- 79246-8_48]
    [127] Zhang J, Zhao DB, Zhao C, Xiong RQ, Ma SW, Gao W. Image compressive sensing recovery via collaborative sparsity. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012,2(3):380-391. [doi: 10.1109/JETCAS.2012.2220391]
    [128] Zhang J, Zhao DB, Jiang F, Gao W. Structural group sparse representation for image compressive sensing recovery. In: Bilgin A, Marcellin MW, Serra-Sagrista J, Storer JA, eds. Proc. of the Data Compression Conf. Los Alamitos: IEEE Computer Society Press, 2013. 331-340. [doi: 10.1109/DCC.2013.41]
    [129] Liu XM, Zhai DM, Zhao DB, Gao W. Image super-resolution via hierarchical and collaborative sparse representation. In: Bilgin A, Marcellin MW, Serra-Sagrista J, Storer JA, eds. Proc. of the Data Compression Conf. Los Alamitos: IEEE Computer Society Press, 2013. 93-102. [doi: 10.1109/DCC.2013.17]
    [130] Shapiro JM. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. on Signal Processing, 1993,41(12): 3445-3462. [doi: 10.1109/78.258085]
    [131] Po DDY, Do MN. Directional multiscale modeling of images using the contourlet transform. IEEE Trans. on Image Processing, 2006,15(6):1610-1620. [doi: 10.1109/TIP.2006.873450]
    [132] Wang XH, Chen MY, Song CM, Xu MC, Fang LL. Contourlet HMT model with directional feature. Science China Information Sciences, 2013,43(5):626-643 (in Chinese with English abstract). [doi: 10.1360/112010-1288]
    [133] Wang XH, Ni PG, Su X, Fang LL, Song CM. The nonsubsampled Contourlet HMT model. Science China Information Sciences, 2013,43(11):1431-1444 (in Chinese with English abstract). [doi: 10.1360/112012-584]
    [134] Kamisli F. Intra prediction based on markov process modeling of images. IEEE Trans. on Image Processing, 2013,22(10):3916-3925. [doi: 10.1109/TIP.2013.2264679]琀椀漀渀猀?椀渀?匀椀最渀愀氀?愀渀搀??洀愀最攀?倀爀漀挀攀猀猀椀渀最???????攀氀氀椀渀最栀愀洀??匀倀???倀爀攀猀猀???????????????嬀搀漀椀??? ????????????????崀?戀爀?嬀???崀?儀椀??堀??吀愀漀?????匀漀渀最?刀堀???愀????匀甀渀?圀???愀椀?娀???刀攀瀀爀攀猀攀渀琀愀琀椀漀渀?昀漀爀?愀?最爀漀甀瀀?漀昀?瀀愀爀愀洀攀琀爀椀挀?挀甀爀瘀攀猀?戀愀猀攀搀?漀渀?琀栀攀?漀爀琀栀漀最漀渀愀氀?挀漀洀瀀氀攀琀攀?唀?猀礀猀琀攀洀???栀椀渀攀猀攀??漀甀爀渀愀氀?漀昀??漀洀瀀甀琀攀爀猀???  ?????????????????椀渀??栀椀渀攀猀攀?眀椀琀栀??渀最氀椀猀栀?愀戀猀琀爀愀挀琀???戀爀?嬀???崀??栀甀椀?????儀甀愀欀????圀愀瘀攀氀攀琀猀?漀渀?愀?戀漀甀渀搀攀搀?椀渀琀攀爀瘀愀氀??一甀洀攀爀椀挀愀氀??攀琀栀漀搀猀?漀昀??瀀瀀爀漀砀椀洀愀琀椀漀渀?吀栀攀漀爀礀????????????????嬀搀漀椀??? ??  ????????? ??????????开?崀?戀爀?嬀???崀??甀栀洀愀渀渀??????椀挀挀栀攀氀氀椀?????匀瀀氀椀渀攀?瀀爀攀眀愀瘀攀氀攀琀猀?昀漀爀?渀漀渀?甀渀椀昀漀爀洀?欀渀漀琀猀??一甀洀攀爀椀猀挀栀攀??愀琀栀攀洀愀琀椀欀??????????????????????嬀搀漀椀??? ???  ???? ?????? 崀?戀爀?嬀???崀?匀眀攀氀搀攀渀猀?圀??吀栀攀?挀漀渀猀琀爀甀挀琀椀漀渀?愀渀搀?愀瀀瀀氀椀挀愀琀椀漀渀?漀昀?眀愀瘀攀氀攀琀猀?椀渀?渀甀洀攀爀椀挀愀氀?愀渀愀氀礀猀椀猀?嬀倀栀????吀栀攀猀椀猀崀???攀氀最椀甀洀???愀琀栀漀氀椀攀欀攀?唀渀椀瘀攀爀猀椀琀攀椀琀??攀甀瘀攀渀????????戀爀?嬀?? 崀?匀眀攀氀搀攀渀猀?圀??吀栀攀?氀椀昀琀椀渀最?猀挀栀攀洀攀????挀甀猀琀漀洀?搀攀猀椀最渀?挀漀渀猀琀爀甀挀琀椀漀渀?漀昀?戀椀漀爀琀栀漀最漀渀愀氀?眀愀瘀攀氀攀琀猀???瀀瀀氀椀攀搀?愀渀搀??漀洀瀀甀琀愀琀椀漀渀愀氀??愀爀洀漀渀椀挀??渀愀氀礀猀椀猀?????????????????  ??嬀搀漀椀??? ??  ??愀挀栀愀?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宋传鸣,赵长伟,刘丹,王相海.3D多尺度几何分析研究进展.软件学报,2015,26(5):1213-1236

复制
相关视频

分享
文章指标
  • 点击次数:6180
  • 下载次数: 9470
  • HTML阅读次数: 3666
  • 引用次数: 0
历史
  • 收稿日期:2014-09-05
  • 最后修改日期:2015-01-21
  • 在线发布日期: 2015-05-06
文章二维码
您是第19936840位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号