一种并行化的启发式流程挖掘算法
作者:
基金项目:

国家自然科学基金(61170079, 61202152, 61472229, 61472284); 山东省科技发展项目(2014GGX101035); 山东省优秀中青年科学家科研奖励基金(BS2014DX013); 青岛市科技计划基础研究项目(13-1-4-153-jch, 2013-1-24); 同济大学嵌入式系统与服务计算教育部重点实验室开放课题基金(ESSCKF201403); 山东科技大学群星计划(qx2013113, qx2013354)


Parallelized Heuristic Process Mining Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    启发式流程挖掘算法在日志噪音与不完备日志的处理方面优势显著,但是现有算法对长距离依赖关系以及2-循环特殊结构的处理存在不足,而且算法未进行并行化处理.针对上述问题,基于执行任务集将流程模型划分为多个案例模型,结合改进的启发式算法并行挖掘各个案例模型所对应的C-net模型;再将上述模型集成得到完整流程对应的C-net.同时,将长距离依赖关系扩展为决策点处两个任务子集之间的非局部依赖关系,给出了更为准确的长距离依赖关系度量指标和挖掘算法.上述改进措施使得该算法更为精确、高效.

    Abstract:

    Heuristic process mining algorithm has a significant advantage in dealing with noise and incomplete logs. However, existing heuristic process mining algorithms cannot handle long-distance dependencies and lenth-2-loop structures correctly in some special situations. Besides, none of them are parallelized. To address the problems, process models are divided into multiple case models according to executed activity set at first. Then the C-nets corresponding to case models are discovered with an improved heuristic process mining algorithm in parallel. After that, these C-nets are integrated to derive the complete process model. Meanwhile, the definition of long- distance dependencies is extended to non-local dependencies between two activity sets in decision points. In addition, a more accurate long- distance dependency metrics and its corresponding mining algorithm are presented. These improvements make the proposed algorithm more accurate and efficient.

    参考文献
    [1] Van der Aalst WMP. Process Mining-Discovery, Conformance and Enhancement of Business Processes. Heidelberg: Springer- Verlag, 2011. 124-187.
    [2] Turner CJ, Tiwari A, Olaiya R, Xu YC. Business process mining: From theory to practice. Business Process Management Journal, 2012,18(3):493-512. [doi: 10.1108/14637151211232669]
    [3] Van der Aalst W, Adriansyah A, De Medeiros AKA, et al. Process mining manifesto. In: Daniel F, Barkaoui K, Dustdar S, eds. Proc. of the BPM 2011 Int'l Workshops. Heidelberg: Springer-Verlag, 2011. 169-194. [doi: 10.1007/978-3-642-28108-2_19]
    [4] Weijters AJMM, van der Aalst WMP, De Medeiros AKA. Process Mining with the HeuristicsMiner Algorithm. BETA Working Paper Series 166. Eindhoven: BETA Publisher in Eindhoven University of Technology, 2006. 1-34.
    [5] Weijters AJMM, Ribeiro JTS. Flexible Heuristics Miner (FHM). BETA Working Paper Series 334. Eindhoven: BETA Publisher in Eindhoven University of Technology, 2010. 1-29.
    [6] Van der Aalst WMP, van Hee KM. Workflow Management: Models, Methods, and Systems. The MIT Press Cambridge, 2004. 31-68.
    [7] Wen LJ, Wang JM, van der Aalst WMP, Huang BQ, Sun JG. Mining process models with prime invisible tasks. IEEE Data Knowledge Engineering, 2010,69(10):999-1021. [doi: 10.1016/j.datak.2010.06.001]
    [8] Wen LJ, van der Aalst WMP, Wang JM, Sun JG. Mining process models with non-free-choice constructs. Data Mining and Knowledge Discovery, 2007,15(2):145-180. [doi: 10.1007/s10618-007-0065-y]
    [9] Wen LJ, Wang JM, Sun JG. Detecting implicit dependencies between tasks from event logs. In: Zhou X, et al., eds. Proc. of the Frontiers of WWW Research and Development. Heidelberg: Springer-Verlag, 2006. 591-603. [doi: 10.1007/11610113_52]
    [10] Van Dongen BF, de Medeiros AKA, Verbeek HMW, Weijters AJMM, van der Aalst WMP. The ProM framework: A new era in process mining tool support. In: Ciardo G, Darondeau P, eds. Proc. of the Applications and Theory of Petri Nets 2005. Heidelberg: Springer-Verlag, 2005. 444-454. [doi: 10.1007/11494744_25]
    [11] Cortadella J, Kishinevsky M, Lavagno L, Yakovlev A. Deriving Petri nets from finite transition systems. IEEE Trans. on Computers, 1998,47(8):859-882. [doi: 10.1109/12.707587]
    [12] Van der Werf JMEM, van Dongen BF, van Hee KM, Hurkens CAJ, Serebrenik A. Process discovery using integer linear programming. In: van Hee KM, Valk R, eds. Proc. of the Applications and Theory of Petri Nets 2008. Heidelberg: Springer-Verlag, 2008. 368-387. [doi: 10.1007/978-3-540-68746-7_24]
    [13] De Medeiros AKA, Weijters AJMM, van der Aalst WMP. Genetic process mining: An experimental evaluation. Data Mining and Knowledge Discovery, 2007,14(2):245-304. [doi: 10.1007/s10618-006-0061-7]
    [14] Lu FM, Zeng QT, Bao YX, Duan H. Hierarchy modeling and formal verification of emergency treatment processes. IEEE Trans. on Systems, Man and Cybernetics: Systems, 2014,44(2):220-234. [doi: 10.1109/TSMC.2013.2242465]
    [15] Lu FM, Zeng QT, Bao YX, Duan H, Zhang H. Mining algorithm of task dependencies based on process case clusters. Computer Integrated Manufacturing Systems, 2013,19(8):1771-1783 (in Chinese with English abstract).
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

鲁法明,曾庆田,段华,程久军,包云霞.一种并行化的启发式流程挖掘算法.软件学报,2015,26(3):533-549

复制
分享
文章指标
  • 点击次数:5904
  • 下载次数: 7867
  • HTML阅读次数: 2416
  • 引用次数: 0
历史
  • 收稿日期:2014-06-30
  • 最后修改日期:2014-11-21
  • 在线发布日期: 2015-03-03
文章二维码
您是第19728269位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号