摘要:因受遮挡、运动模糊、剧烈形变等因素的影响,稳定且准确的目标跟踪是当前计算机视觉研究领域重要挑战之一.首先采用中层视觉线索的超像素描述目标/背景的部件,以部件颜色直方图作为其特征,并通过聚类部件库的特征集构建初始表观模型,部件表达的局部性和灵活性使该模型能够准确描述目标/背景;然后,利用贝叶斯滤波模型计算目标框的初始状态,并提出相似物体干扰的检测和处理算法以避免跟踪漂移,得到更健壮的结果;最后,为了减弱形变、遮挡、模糊对表观模型的影响以更好地保持目标特征,提出一种基于部件库的特征补集的在线表观模型更新算法,根据部件变化实时反映目标/背景的变化情况.在多个具有跟踪挑战的视频序列上的实验结果表明(共12个视频序列):与现有跟踪方法相比,该算法跟踪结果的中心误差更小,成功帧数更多,能够更准确并稳定、有效地跟踪目标物体.