基于社会学理论的信任关系预测模型
作者:
基金项目:

国家自然科学基金(61300148);吉林省科技发展计划(20130206051GX);吉林省科技计划(20130522112JH);中国博士后基金(2012M510879);吉林大学基本科研业务费科学前沿与交叉项目(201103129)


Trust Prediction Modeling Based on Social Theories
Author:
  • WANG Ying

    WANG Ying

    College of Computer Science and Technology, Jilin University, Changchun 130012, China;Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of Education, Changchun 130012, China;College of Mathematics, Jilin University, Changchun 130012, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Xin

    WANG Xin

    College of Computer Science and Technology, Jilin University, Changchun 130012, China;Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of Education, Changchun 130012, China;College of Computer Technology and Engineering, Changchun Institute of Technology, Changchun 130012, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZUO Wan-Li

    ZUO Wan-Li

    College of Computer Science and Technology, Jilin University, Changchun 130012, China;Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of Education, Changchun 130012, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着社会网络的盛行,信任作为用户之间交互的基础,在信息共享、经验交流和社会舆论方面发挥着重要作用.然而,信任是一个复杂而抽象的概念,受多种因素影响,很难识别信任形成的诱因以及其形成机制.由于来自社会科学的社会学理论有助于解释社会现象,而社会网络反映了现实世界中用户之间的联系,因此,从社会学角度出发,通过研究社会等级理论和同质性理论获取信任关系的发展规律,进而构建信任关系预测模型.首先,对社会等级理论和同质性理论进行阐述,并验证了社会等级理论和同质性理论在社会网络中的存在;然后,分别针对社会等级理论和同质性理论对信任关系的影响提出社会等级正则化方法和同质性正则化方法;最后,利用非负矩阵的三维分解方法并结合社会等级理论和同质性理论实现对信任关系预测的建模,并提出SocialTrust模型用于信任关系预测.实验结果表明,相比于其他方法,该方法在信任关系预测方面具有较高的精度.

    Abstract:

    With the pervasion of social media, trust, as the basis of human interactions, has been playing an important role in addressing information sharing, experience communication, and public opinions. However, trust is a complex and abstract concept influenced by many factors, and it is difficult to identify the inducing factors and analyze the formation mechanism. Recognizing that social theories from social sciences are helpful to explain social phenomena, and social networks reflect user correlations in real world, this paper investigatethes trust prediction problem from the perspective of social science, and constructs trust prediction model by studying the disciplines of trust relations occurring and developing based on social status theory and homophily theory. Firstly, it gives a brief introduction to social status theory and homophily theory, and verifies the existence of social status theory and homophily theory in social networks. Then, it proposes social status regularization and homophily regularization according to the effects of social status theory and homophily theory in predicting trust relations. Lastly, it models trust prediction by incorporating non-negative matrix tri-factorization, social status theory and homophily theory, and establishes trust prediction model SocialTrust. Experimental results demonstratethe effectiveness of the proposed method in trust prediction with a higher accuracy than other baseline methods.

    参考文献
    [1] Mayayise T, Olusegun OI. E-Commerce assurance models and trustworthiness issues: An empirical study. Journal of Information Management & Computer Security, 2014,22(1):76-96. [doi: 10.1108/IMCS-01-2013-0001]
    [2] Zhang J, Cohen R. A framework for trust modeling in multiagent electronic marketplaces with buying advisors to consider varying seller behavior and the limiting of seller bids. ACM Trans. on Intelligent Systems and Technology (TIST), 2013,4(2):1-33. [doi: 10.1145/2438653.2438659]
    [3] Hoogendoorn M, Jaffry SW, van Maanen PP, Treur J. Design and validation of a relative trust model. Knowledge-Based Systems (KBS), 2014,57:81-94. [doi: 10.1016/j.knosys.2013.12.012]
    [4] Kennedy WG, Krueger F. Building a cognitive model of social trust within ACT-R. In: Proc. of the AAAI Conf. on Artificial Intelligence (AAAI). Palo Alto: AI Access Foundation, 2013. 29-34.
    [5] Ivanov I, Vajda P, Korshunov P, Ebrahimi T. Comparative study of trust modeling for automatic landmark tagging. IEEE Trans. on Information Forensics and Security (TIFS), 2013,8(6):911-923. [doi: 10.1109/TIFS.2013.2242889]
    [6] Liu YH, Sun Y, Liu SY, Kot AC. Securing online reputation systems through trust modeling and temporal analysis. IEEE Trans. on Information Forensics and Security (TIFS), 2013,8(6):936-948. [doi: 10.1109/TIFS.2013.2238929]
    [7] Kuter U, Golbeck J. Using probabilistic confidence models for trust inference in Web-based social networks. ACM Trans. on Internet Technology, 2010,10(2):1-23. [doi: 10.1145/1754393.1754397]
    [8] Tang J, Lou TC, Kleinberg J. Inferring social ties across heterogeneous networks. In: Proc. of the 5th ACM Int'l Conf. on Web Search and Data Mining (WSDM). Seattle: Association for Computing Machinery, 2012. 743-752. [doi: 10.1145/2124295. 2124382]
    [9] Rettinger A, Nickles M, Tresp V. Statistical relational learning of trust. Machine Learning, 2011,82(2):191-209. [doi: 10.1007/ s10994-010-5211-x]
    [10] Hamed K, Bashah IN, Jamalul-lail AM. A unified trust model for pervasive environments-simulation and analysis. KSII Trans. on Internet & Information Systems, 2013,7(7):1569-1584. [doi: 10.3837/tiis.2013.07.003]
    [11] Lee MKO, Efraim T. A trust model for consumer Internet shopping. Int'l Journal of Electronic Commerce, 2001,6(1):75-92.
    [12] Surya N, Paris C, Bista SK, Sherchan W. A trust model based analysis of social networks. Int'l Journal of Trust Management in Computing and Communications, 2013,1(1):3-22.
    [13] Liu HF, Lim EP, Lauw HW, Le MT, Sun AX, Srivastava J, Kim YA. Predicting trusts among users of online communities: An epinions case study. In: Proc. of the 9th ACM Conf. on Electronic Commerce. Chicago: Association for Computing Machinery, 2008. 310-319. [doi: 10.1145/1386790.1386838]
    [14] Kiyana Z, Abdollah A. A syntactical approach for interpersonal trust prediction in social Web applications: Combining contextual and structural data. Knowledge-Based Systems (KBS), 2012,26:93-102. [doi: 10.1016/j.knosys.2010.10.007]
    [15] Borzymek P, Sydow M, Wierzbicki A. Enriching trust prediction model in social network with user rating similarity. In: Proc. of the Int'l Conf. on Computational Aspects of Social Networks. Fontainbleu: IEEE Computer Society, 2009. 40-47. [doi: 10.1109/ CASoN.2009.30]
    [16] Xiang RJ, Neville J, Rogati M. Modeling relationship strength in online social networks. In: Proc. of the Int'l Conf. on World Wide Web (WWW). Raleigh: Association for Computing Machinery, 2010. 981-990. [doi: 10.1145/1772690.1772790]
    [17] Liu GF, Wang Y, Orgun MA. Social context-aware trust network discovery in complex contextual social networks. In: Proc. of the AAAI Conf. on Artificial Intelligence (AAAI). Toronto: AI Access Foundation, 2012. 101-107.
    [18] Huang J, Nie F, Huang H, Lei Y, Ding C. Social trust prediction using rank-k matrix recovery. In: Proc. of the Int'l Joint Conf. on Artificial Intelligence (IJCAI). Beijing: Int'l Joint Conf. on Artificial Intelligence, 2013. 2647-2653.
    [19] Tang JL, Gao HJ, Hu X, Liu H. Exploiting homophily effect for trust prediction. In: Proc. of the Int'l Conf. on Web Search and Data Mining (WSDM). Rome: Association for Computing Machinery, 2013. 53-62. [doi: 10.1145/2433396.2433405]
    [20] Tang JL, Gao HJ, Liu H. mTrust: Discerning multi-faceted trust in a connected world. In: Proc. of the Int'l Conf. on Web Search and Data Mining (WSDM). Seattle: Association for Computing Machinery, 2012. 93-102. [doi: 10.1145/2124295.2124309]
    [21] Fang H, Bao Y, Zhang J. Leveraging decomposed trust in probabilistic matrix factorization for effective recommendation. In: Proc. of the Int'l Joint Conf. on Artificial Intelligence (AAAI). Quebec: Association for the Advancement of Artificial Intelligence, 2014. 30-36.
    [22] Leskovec J, Huttenlocher D, Kleinberg J. Signed networks in social media. In: Proc. of the SIGCHI Conf. on Human Factors in Computing Systems. Atlanta: Association for Computing Machinery, 2010. 1361-1370. [doi: 10.1145/1753326.1753532]
    [23] Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature, 1999,401(6755):788-791. [doi: 10.1038/44565]
    [24] Huang J, Nie F, Huang H, Tu YC. Trust prediction via aggregating heterogeneous social networks. In: Proc. of the 21st ACM Int'l Conf. on Information and Knowledge Management. Maui: Association for Computing Machinery, 2012. 1774-1778. [doi: 10.1145/ 2396761.2398515]
    [25] Ye JJ. Constraint qualifications and KKT conditions for bilevel programming problems. Mathematics of Operations Research, 2006, 31(4):811-824. [doi: 10.1287/moor.1060.0219]
    [26] Lin CJ. Projected gradient methods for nonnegative matrix factorization. Neural Computation, 2007,19(10):2756-2779. [doi: 10.1162/neco.2007.19.10.2756]
    [27] Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 2007,58(7):1019-1031. [doi: 10.1002/asi.20591]
    引证文献
引用本文

王英,王鑫,左万利.基于社会学理论的信任关系预测模型.软件学报,2014,25(12):2893-2904

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-05-06
  • 最后修改日期:2014-08-21
  • 在线发布日期: 2014-12-04
文章二维码
您是第20262446位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号