State Key Laboratory of Management and Control for Complex Systems (Institute of Automation, The Chinese Academy of Sciences), Beijing 100190, China 在期刊界中查找 在百度中查找 在本站中查找
State Key Laboratory of Management and Control for Complex Systems (Institute of Automation, The Chinese Academy of Sciences), Beijing 100190, China 在期刊界中查找 在百度中查找 在本站中查找
Web user's online interacting behavior with others usually makes some user generated content (e.g. forum threads and Weibo topics) popular. The modeling and prediction of the popularity of online content are of great research importance and practical value in many different domains. To predict the popularity of forum threads, this paper discusses several dynamic factors that might affect the popularity of online content based on the information of dynamic evolution at the early stage, and proposes a popularity prediction algorithm which makes use of the locality property and combines multiple dynamic factors. The proposed algorithm is further evaluated with the Douban group dataset. The experimental results show that, compared with the baseline methods, our method achieves relatively better performance in predicting the popularity of forum threads.
[1] Ugander J, Backstrom L, Marlow C, Kleinberg J. Structural diversity in social contagion. Proc. of the National Academy of Sciences, 2012,109(16):5962-5966. [doi: 10.1073/pnas.1116502109]
[2] Yang J, Leskovec J. Patterns of temporal variation in online media. In: Proc. of the fourth ACM Int'l Conf. on Web Search and Data Mining. Hong Kong: ACM Press, 2011. 177-186. [doi: 10.1145/1935826.1935863]
[3] Figueiredo F. On the prediction of popularity of trends and hits for user generated videos. In: Proc. of the 6th ACM Int'l Conf. on Web Search and Data Mining. Rome: ACM Press, 2013. 741-746. [doi: 10.1145/2433396.2433489]
[4] Chatzopoulou G, Sheng C, Faloutsos M. A first step towards understanding popularity in YouTube. In: Proc. of the INFOCOM IEEE Conf. on Computer Communications Workshops. San Diego: IEEE, 2010. 1-6. [doi: 10.1109/INFCOMW.2010.5466701]
[5] Borghol Y, Mitra S, Ardon S, Carlsson N, Eager D, Mahanti A. Characterizing and modelling popularity of user-generated videos. Performance Evaluation, 2011,68(11):1037-1055. [doi: 10.1016/j.peva.2011.07.008]
[6] Figueiredo F, Benevenuto F, Almeida JM. The Tube over time: Characterizing popularity growth of YouTube videos. In: Proc. of the 4th ACM Int'l Conf. on Web Search and Data Mining. Hong Kong: ACM Press, 2011. 745-754. [doi: 10.1145/1935826. 1935925]
[7] Borghol Y, Ardon S, Carlsson N, Eager D, Mahanti A. The untold story of the clones: Content-Agnostic factors that impact YouTube video popularity. In: Proc. of the 18th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Beijing: ACM Press, 2012. 1186-1194. [doi: 10.1145/2339530.2339717]
[8] Brodersen A, Scellato S, Wattenhofer M. YouTube around the world: Geographic popularity of videos. In: Proc. of the 21st Int'l Conf. on World Wide Web. Lyon: ACM Press, 2012. 241-250. [doi: 10.1145/2187836.2187870]
[9] Yin P, Luo P, Wang M, Lee WC. A straw shows which way the wind blows: Ranking potentially popular items from early votes. In: Proc. of the 5th ACM Int'l Conf. on Web Search and Data Mining. Seattle: ACM Press, 2012. 623-632. [doi: 10.1145/2124295. 2124370]
[10] Ahmed M, Spagna S, Huici F, Niccolini S. A peek into the future: Predicting the evolution of popularity in user generated content. In: Proc. of the 6th ACM Int'l Conf. on Web Search and Data Mining. Rome: ACM Press, 2013. 607-616. [doi: 10.1145/2433396. 2433473]
[11] Li HT, Ma XQ, Wang F, Liu JC, Xu K. On popularity prediction of videos shared in online social networks. In: Proc. of the 22nd ACM Int'l Conf. on Information & Knowledge Management. San Francisco: ACM Press, 2013. 169-178. [doi: 10.1145/2505515. 2505523]
[12] Pinto H, Almeida JM, Gonçalves MA. Using early view patterns to predict the popularity of YouTube videos. In: Proc. of the 6th ACM Int'l Conf. on Web Search and Data Mining. Rome: ACM Press, 2013. 365-374. [doi: 10.1145/2433396.2433443]
[13] Zaman T, Fox EB, Bradlow ET. A Bayesian approach for predicting the popularity of Tweets. arXiv e-print 1304.6777. 2013.
[14] Ma HX, Qian WN, Xia F, He XF, Xu J, Zhou AY. Towards modeling popularity of microblogs. Frontiers of Computer Science in China, 2013,7(2):171-184. [doi: 10.1007/s11704-013-3901-9]
[15] Kupavskii A, Umnov A, Gusev G, Serdyukov P. Predicting the audience size of a Tweet. In: Proc. of the 7th Int'l Conf. on Weblogs and Social Media. Cambridge: The AAAI Press, 2013.
[16] Jenders M, Kasneci G, Naumann F. Analyzing and predicting viral Tweets. In: Proc. of the 22nd Int'l Conf. on World Wide Web Companion. Republic and Canton of Geneva: ACM Press, 2013. 657-664.
[17] Hong LJ, Dan O, Davison BD. Predicting popular messages in Twitter. In: Proc. of the 20th Int'l Conf. on Companion on World Wide Web. Hyderabad: ACM Press, 2011. 57-58. [doi: 10.1145/1963192.1963222]
[18] Chen GH, Nikolov S, Shah D. A latent source model for nonparametric time series classification. In: Proc. of the Advances in Neural Information Processing Systems. 2013. 1088-1096.
[19] Ma ZY, Sun AX, Cong G. Will this #hashtag be popular tomorrow? In: Proc. of the 35th Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. Portland: ACM Press, 2012. 1173-1174. [doi: 10.1145/2348283.2348525]
[20] Szabo G, Huberman BA. Predicting the popularity of online content. Communications of the ACM, 2010,53(8):80-88. [doi: 10.1145/1787234.1787254]
[21] Lerman K, Hogg T. Using a model of social dynamics to predict popularity of news. In: Proc. of the 19th Int'l Conf. on World Wide Web. Raleigh: ACM Press, 2010. 621-630. [doi: 10.1145/1772690.1772754]
[22] Khosla A, Sarma A, Hamid R. What makes an image popular? In: Proc. of the 23rd Int'l Conf. on World Wide Web Companion. Seoul: ACM Press, 2014. 867-876. [doi: 10.1145/2566486.2567996]
[23] Cheng J, Adamic LA, Dow PA. Can cascades be predicted? In: Proc. of the 23rd Int'l Conf. on World Wide Web Companion. Seoul: ACM Press, 2014. 925-936. [doi: 10.1145/2566486.2567997]
[24] Wu F, Huberman BA. Novelty and collective attention. Proc. of The National Academy of Sciences, 2007,104(45):17599-17601. [doi: 10.1073/pnas.0704916104]
[25] Ye L, Keogh E. Time series shapelets: A new primitive for data mining. In: Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Paris: ACM Press, 2009. 947-956. [doi: 10.1145/1557019.1557122]
[26] Japkowicz N, Stephen S. The class imbalance problem: A systematic study. Intelligent Data Analysis, 2002,6(5):429-449.Zhou ZH. Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC, 2012. 72-73.