黎曼核局部线性编码
作者:
基金项目:

国家自然科学基金(61175048); 辽宁省教育厅科学研究项目(L2013408)


Local Linear Coding Based on Riemannian Kernel
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    最近的研究表明:在许多计算机视觉任务中,将对称正定矩阵表示为黎曼流形上的点能够获得更好的识别性能.然而,已有大多数算法仅由切空间局部逼近黎曼流形,不能有效地刻画样本分布.受核方法的启发,提出了一种新的黎曼核局部线性编码方法,并成功地应用于视觉分类问题.首先,借助于最近所提出的黎曼核,把对称正定矩阵映射到再生核希尔伯特空间中,通过局部线性编码理论建立稀疏编码和黎曼字典学习数学模型;其次,结合凸优化方法,给出了黎曼核局部线性编码的字典学习算法;最后,构造一个迭代更新算法优化目标函数,并且利用最近邻分类器完成测试样本的鉴别.在3个视觉分类数据集上的实验结果表明,该算法在分类精度上获得了相当大的提升.

    Abstract:

    Recent research has shown that better recognition performance can be attained through representing symmetric positive definite matrices as points on Riemannian manifolds for many computer vision tasks. However, most existing algorithms only approximate the Riemannian manifold locally by its tangent space and are incapable of scaling effectively distribution of samples. Inspired by kernel methods, a novel method, called local linear coding based on Riemannian kernel (LLCRK), is proposed and applied successfully to vision classification issues. Firstly, with the aid of recently introduced Riemannian kernel, symmetric positive definite matrices are mapped into the reproducing kernel Hilbert space by kernel method and a mathematical model of sparse coding and Riemannian dictionary learning is constructed by local linear coding theory. Secondly, an efficient algorithm of LLCRK is presented for dictionary learning according to the convex optimization methods. Finally, an iterative updating algorithm is constructed to optimize the objective function, and the test samples are classified by nearest neighbor classifier. Experimental results on three visual classification data sets demonstrate that the proposed algorithm achieves considerable improvement in discrimination accuracy.

    参考文献
    [1] Huang K, Aviyente S. Sparse representation for signal classification. In: Proc. of the Advances in Neural Information Processing Systems. 2006. 609-616. http://papers.nips.cc/paper/3130-sparse-representation-for-signal-classification.pdf
    [2] Cai D, He XF, Han JW. Spectral regression: A unified approach for sparse subspace learning. In: Proc. of the IEEE Int'l Conf. on Data Mining. 2007. 73-82. [doi: 10.1109/ICDM.2007.89]
    [3] Raina R, Battle A, Lee H, Packer B, Ng AY. Self-Taught learning: Transfer learning from unlabeled data. In: Proc. of the Int'l Conf. on Machine Learning. Oregon: ACM Press, 2007. 759-766. [doi: 10.1145/1273496.1273592]
    [4] Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A. Supervised dictionary learning. In: Proc. of the Advances in Neural Information Processing Systems. 2008. http://papers.nips.cc/paper/3448-supervised-dictionary-learning.pdf
    [5] Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A. Discriminative learned dictionaries for local image analysis. In: Proc. of the 2008 IEEE Conf. on Computer Vision and Pattern Recognition. Anchorage: IEEE Computer Society Press, 2008. 1-8. [doi: 10.1109/cvpr.2008.4587652]
    [6] Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227. [doi: 10.1109/TPAMI.2008.79]
    [7] Donoho DL. Compressed sensing. IEEE Trans. on Information Theory, 2006,52(4):1289-1306. [doi: 10.1109/TIT.2006.871582]
    [8] Yu K, Zhang T, Gong Y. Nonlinear learning using local coordinate coding. In: Proc. of the Advances in Neural Information Processing Systems, Vol.22. 2009. 2223-2231. http://papers.nips.cc/paper/3875-nonlinear-learning-using-local-coordinate-coding. pdf
    [9] Wei CP, Chao YW, Yeh YR, Wang YCF. Locality-Sensitive dictionary learning for sparse representation based classification. Pattern Recognition, 2013,46(5):1277-1287. [doi: 10.1016/j.patcog.2012.11.014]
    [10] Wang JJ, Yang JC, Yu K, Lü F, Huang TS. Gong YH. Locality-Constrained linear coding for image classification. In: Proc. of the 2010 IEEE Int'l Conf. on Computer Vision. Washington: IEEE Computer Society Press, 2010. 3360-3367. [doi: 10.1109/CVPR. 2010.5540018]
    [11] Hu WM, Li X, Luo WH, Zhang XQ, Maybank S, Zhang ZF. Single and multiple object tracking using log-Euclidean Riemannian subspace and block-division appearance model. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012,34(12): 2420-2440. [doi: 10.1109/TPAMI.2012.42]
    [12] Pang Y, Yuan Y, Li X. Gabor-Based region covariance matrices for face recognition. IEEE Trans. on Circuits and Systems for Video Technology, 2008,18(7):989-993. [doi: 10.1109/TCSVT.2008.924108]
    [13] Bak S, Corvee E, Bremond F, Thonnat M. Boosted human re-identification using Riemannian manifolds. Journal Image and Vision Computing, 2012,30(6-7):443-452. [doi: 10.1016/j.imavis.2011.08.008]
    [14] Harandi MT, Sanderson C, Wiliem A, Lovell BC. Kernel analysis over Riemannian manifolds for visual recognition of actions, pedestrians and textures. In: Proc. of the 2012 IEEE Workshop on the Applications of Computer Vision. Washington: IEEE Computer Society Press, 2012. 433-439. [doi: 10.1109/WACV.2012.6163005]
    [15] Tuzel O, Porikli F, Meer P. Pedestrian detection via classification on Riemannian manifolds. IEEE Trans. on Pattern Analysis and Intelligence, 2008,30(10):1713-1727. [doi: 10.1109/TPAMI.2008.75]
    [16] Arsigny V, Fillard P, Pennec X, Ayache N. Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM Journal on Matrix Analysis and Applications, 2006,29(1):328-347. [doi: 10.1137/050637996]
    [17] Tosato D, Farenzena M, Cristani M, Spera M, Murino V. Multi-Class classification on Riemannian manifolds for video surveillance. In: Proc. of the 11th European Conf. on Computer Vision. Heraklion: Eurographics Association Press, 2010. 378-391. [doi: 10. 1007/978-3-642-15552-9_28]
    [18] Carreira J, Caseiro R, Batista J, Sminchisescu C. Semantic segmentation with second-order pooling. In: Proc. of the 12th European Conf. on Computer Vision. Heraklion: Eurographics Association Press, 2012. 430-443. [doi: 10.1007/978-3-642-33786-4_32]
    [19] Harandi MT, Sanderson C, Hartley R, Lovel BC. Sparse coding and dictionary learning for symmetric positive definite matrices: A kernel approach. In: Proc. of the 12th European Conf. on Computer Vision. Heraklion: Eurographics Association Press, 2012. 216-229. [doi: 10.1007/978-3-642-33709-3_16]
    [20] Jayasumana S, Hartley R, Salzmann M, Li H, Harandi MT. Kernel methods on the Riemannian manifold of symmetric positive definite matrices. In: Proc. of the 2013 IEEE Conf. on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2013. 73-80. [doi: 10.1109/CVPR.2013.17]
    [21] Harandi MT, Sanderson C, Shen CH, Lovell B. Dictionary learning and sparse coding on Grassmann manifolds: An extrinsic solution. In: Proc. of the 2013 IEEE Int'l Conf. on Computer Vision. Washington: IEEE Computer Society Press, 2013. 3120-3127. [doi: 10.1109/ICCV.2013.387]
    [22] Sanin A, Sanderson C, Harandi MT, Lovell BC. Spatio-Temporal covariance descriptors for action and gesture recognition. In: Proc. of the IEEE Workshop on Applications of Computer Vision (WACV). Washington: IEEE Computer Society Press, 2013. 103-110. [doi: 10.1109/WACV.2013.6475006]
    [23] Jayasumana S, Hartley R, Salzmann M, Li HD, Harandi MT. Combining multiple manifold-alued descriptors for improved object recognition. In: Proc. of the Digital Image Computing: Techniques and Applications. 2013. 1-6. [doi: 10.1109/DICTA.2013. 6691493]
    [24] Li PH, Wang QL, Zuo WM, Zhang L. Log-Euclidean kernels for sparse representation and dictionary learning. In: Proc. of the 2013 IEEE Int'l Conf. on Computer Vision. Washington: IEEE Computer Society Press, 2013. 1601-1608. [doi: 10.1109/ICCV.2013. 202]
    [25] Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit. Journal of SIAM Review, 2001,43(1):129-159. [doi: 10.1137/S003614450037906X]
    [26] Candes E, Tao T. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. on Information Theory, 2006,52(12):5406-5425. [doi: 10.1109/TIT.2006.885507]
    [27] Lee H, Battle A, Raina R, Andrew YN. Efficient sparse coding algorithms. In: Proc. of the Advances in Neural Information Processing Systems. 2006. 801-808. http://papers.nips.cc/paper/2979-efficient-sparse-coding-algorithms.pdf
    [28] Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computing. Int'l Journal of Computer Vision, 2006,66(1): 41-66. [doi: 10.1007/s11263-005-3222-z]
    [29] Sivalingam R, Boley D, Morellas V, Papanikolopoulos N. Tensor sparse coding for region covariances. In: Proc. of the 11th European Conf. on Computer Vision. Berlin: Eurographics Association Press, 2010. 722-735. [doi: 10.1007/978-3-642-15561-1_ 52]
    [30] Guo K, Ishwar P, Konrad J. Action recognition using sparse representation on covariance manifolds of optical flow. In: Proc. of the 2010 7th IEEE Int'l Conf. on Advanced Video and Signal Based Surveillance. Washington: IEEE Computer Society Press, 2010. 188-195. [doi: 10.1109/AVSS.2010.71]
    相似文献
    引证文献
引用本文

姜伟,毕婷婷,李克秋,杨炳儒.黎曼核局部线性编码.软件学报,2015,26(7):1812-1823

复制
分享
文章指标
  • 点击次数:3407
  • 下载次数: 5576
  • HTML阅读次数: 1270
  • 引用次数: 0
历史
  • 收稿日期:2014-05-06
  • 最后修改日期:2014-09-01
  • 在线发布日期: 2015-07-02
文章二维码
您是第19862253位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号