一般间隙及一次性条件的严格模式匹配
作者:
基金项目:

国家自然科学基金(61229301, 61370144); 国家高技术研究发展计划(863)(2012AA011005); 教育部创新团队发展计划(IRT13059); 河北省自然科学基金(F2013202138); 河北省教育厅重点项目(ZH2012038)


Strict Pattern Matching with General Gaps and One-Off Condition
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    具有间隙约束的模式匹配是序列模式挖掘的关键问题之一.一次性条件约束是要求序列中每个位置的字符最多只能使用一次,在序列模式挖掘中采用一次性条件约束更加合理.但是目前,间隙约束多为非负间隙,非负间隙对字符串中每个字符的出现顺序具有严格的约束,一定程度上限定了匹配的灵活性.为此,提出了一般间隙及一次性条件的严格模式匹配问题;之后,理论证明了该问题的计算复杂性为NP-Hard问题.为了对该问题进行有效求解,在网树结构上构建了动态更新结点信息的启发式求解算法(dynamically changing node property,简称DCNP).该算法动态地更新各个结点的树根路径数、叶子路径数和树根-叶子路径数等,进而每次可以获得一个较优的出现;之后,迭代这一过程.为了有效地提高DCNP算法速度,避免动态更新大量的结点信息,提出了Checking机制,使得DCNP算法仅在可能产生内部重复出现的时候才进行动态更新.理论分析了DCNP算法的时间复杂度和空间复杂度.大量实验结果验证了DCNP算法具有良好的求解性能.

    Abstract:

    Pattern matching with gap constraints is one of the key issues of sequential pattern mining. One-off condition which is always used in sequential pattern mining tasks means that the character of each position in the sequence can be used at most once for pattern matching. Recently, most researches focus on pattern matching with non-negative gaps, but the rule of non-negative gaps implies the character's order in the sequence may limit the flexibility of matching. For these reasons, this article proposes a strict pattern matching with general gaps and one-off condition and shows that this problem is NP-hard. To tackle this issue, a heuristic algorithm, named dynamically changing node property (DCNP), is designed based on nettree which dynamically updates the properties of each node such as the numbers of root paths, leaf paths and root-leaf paths, and thus can get a better occurrence. The above process is then iterated. To effectively improve the speed of DCNP and avoid dynamically updating information of nodes on a large scale, a checking mechanism is applied to allow DCNP update information of nodes only when the occurrence may have repetition. The space and time complexities of DCNP are also analyzed. Experimental results show that DCNP has better performance than other competitive algorithms.

    参考文献
    [1] Chou C, Jea K, Liao H. A syntactic approach to twig-query matching on XML streams. Journal of Systems and Software, 2011, 84(6):993-1007. [doi: 10.1016/j.jss.2011.01.033]
    [2] Wang M, Zhou JL, Le JJ. A data reusing strategy in column-store data warehouse. Chinese Journal of Computers, 2013,36(8): 1626-1635 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2013.01626]
    [3] Song T, Li DN, Wang DS, Xue YB. Memory efficient algorithm and architecture for multi-pattern matching. Ruan Jian Xue Bao/ Journal of Software, 2013,24(7):1650-1665 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4314.htm [doi: 10.3724/SP.J.1001.2013.04314]
    [4] Akutsu T. Approximate string matching with variable length don't care characters. IEICE Trans. on Information and Systems, 1996, E79-D(9):1353-1354.
    [5] Crochemore M, Iliopoulos C, Makris C, Rytter W, Tsakalidis A, Trichlas K. Approximate string matching with gaps. Nordic Journal of Computing, 2002,9(1):54-65.
    [6] Zhang M, Kao B, Cheung D, Yip K. Mining periodic patterns with gap requirement from sequence. ACM Trans. on Knowledge Discovery from Data, 2007,1(2):Article 7. [doi: 10.1145/1267066.1267068]
    [7] Wu Y, Wang L, Ren J, Ding W, Wu X. Mining sequential patterns with periodic wildcard gaps. Applied Intelligence, 2014,41(1): 99-116. [doi: 10.1007/s10489-013-0499-4]
    [8] Ding B, Lo D, Han J, Khoo SC. Efficient mining of closed repetitive gapped subsequences from a sequence database. In: Ioannidis YE, Lee DL, Ng RT, eds. Proc. of the IEEE 25th Int'l Conf. on Data Engineering (ICDE). IEEE, 2009. 1024-1035. [doi: 10.1109/ ICDE.2009.104]
    [9] Chen G, Wu X, Zhu X, Arslan AN, He Y. Efficient string matching with wildcards and length constraints. Knowledge and Information Systems, 2006,10(4):399-419. [doi: 10.1007/s10115-006-0016-8]
    [10] Wu YX, Wu XD, Jiang H, Min F. A heuristic algorithm for MPMGOOC. Chinese Journal of Computers, 2011,34(8):1452-1462 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2011.01452]
    [11] Guo D, Hu X, Xie F, Wu X. Pattern matching with wildcards and gap-length constraints based on a centrality-degree graph. Applied Intelligence, 2013,39(1):57-74. [doi: 10.1007/s10489-012-0394-4]
    [12] Wu X, Zhu X, He Y, Araslan A. PMBC: Pattern mining from biological sequences with wildcard constraints. Computers in Biology and Medicine, 2013,43(5):481-492. [doi: 10.1016/j.compbiomed.2013.02.006]
    [13] Lam H, Morchen F, Fradkin D, Calders T. Mining compressing sequential patterns. Statistical Analysis and Data Mining, 2012,7(1): 34-52. [doi: 10.1002/sam.11192]
    [14] Fredriksson K, Grabowski S. Efficient algorithms for pattern matching with general gaps and character classed. In: Crestani F, Ferragina P, Sanderson M, eds. Proc. of the Int'l Conf. on String Processing and Information Retrieval. Springer-Verlag, 2006. 267-278. [doi: 10.1007/11880561_22]
    [15] Fredriksson K, Grabowski S. Efficient algorithms for pattern matching with general gaps, character classes, and transposition invariance. Information Retrieval, 2008,11(4):335-357. [doi: 10.1007/s10791-008-9054-z]
    [16] Wu YX, Liu YW, Guo L, Wu XD. Subnettrees for strict pattern matching with general gaps and length constraints. Ruan Jian Xue Bao/Journal of Software, 2013,24(5):915-932 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4381.htm [doi: 10.3724/SP.J.1001.2013.04381]
    [17] He D, Wu X, Zhu X. SAIL-APPROX: An efficient on-line algorithm for approximate pattern matching with wildcards and length constraints. In: Proc. of the 2007 IEEE Int'l Conf. on Bioinformatics and Biomedicine (BIBM 2007). IEEE Computer Society, 2007. 151-158. [doi: 10.1109/BIBM.2007.48]
    [18] Manber U, Baeza-Yates R. An algorithm for string matching with a sequence of don't cares. Information Processing Letters, 1991, 37(3):133-136. [doi: 10.1016/0020-0190(91)90032-D]
    [19] Navarro G, Raffinot M. Fast and simple character classes and bounded gaps pattern matching, with applications to protein searching. Journal of Computational Biology, 2003,10(6):903-923. [doi: 10.1089/106652703322756140]
    [20] Bille P, Gørtz I, Vildhøj H, Wind D. String matching with variable length gaps. In: Chávez E, Lonardi S, eds. Proc. of the 17th Int'l Conf. on String Processing and Information Retrieval (SPIRE 2010). Mexico: Springer-Verlag, 2010. 385-394. [doi: 10.1007/978- 3-642-16321-0_40]
    [21] Bille P, Gørtz I, Vildhøj H, Wind D. String matching with variable length gaps. Theoretical Computer Science, 2012,443:25-34. [doi: 10.1016/j.tcs.2012.03.029]
    [22] Wu XD, Xie F, Huang YM, Hu XG, Gao J. Mining sequential patterns with wildcards and the one-off condition. Ruan Jian Xue Bao/Journal of Software, 2013,24(8):1804-1815 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4422.htm [doi: 10.3724/SP.J.1001.2013.04422]
    [23] Zhang S, Zhang J, Zhu X, Huang Z. Identifying follow-correlation itemset-pairs. In: Proc. of the Int'l Conf. on Data Mining (ICDM). IEEE Computer Society, 2006. 765-774. [doi: 10.1109/ICDM.2006.84]
    [24] Warmuth M, Haussler D. On the complexity of iterated shuffle. Journal of Computer and System Sciences, 1984,28(3):345-358. [doi: 10.1016/0022-0000(84)90018-7]
    [25] Wu Y, Wu X, Min F, Li Y. A nettree for pattern matching with flexible wildcard constraints. In: Proc. of the 2010 IEEE Int'l Conf. on Information Reuse and Integration (IRI 2010). IEEE Systems, Man, and Cybernetics Society, 2010. 109-114. [doi: 10.1109/IRI. 2010.5558954]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

柴欣,贾晓菲,武优西,江贺,吴信东.一般间隙及一次性条件的严格模式匹配.软件学报,2015,26(5):1096-1112

复制
分享
文章指标
  • 点击次数:5125
  • 下载次数: 5590
  • HTML阅读次数: 1424
  • 引用次数: 0
历史
  • 收稿日期:2014-05-22
  • 最后修改日期:2014-08-15
  • 在线发布日期: 2014-12-12
文章二维码
您是第19936840位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号