耳廓点云形状特征匹配的路径跟随算法
作者:
基金项目:

国家自然科学基金(61472170, 61170143, 60873110, 61370141); 智能通信软件与多媒体北京市重点实验室开发课题(ITSM201301)


Shape Feature Matching Algorithm of Ear Point Cloud Using Path Following
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    路径跟随算法结合凸松弛方法与凹松弛方法,通过跟随凸凹问题的解路径,近似地求解图匹配问题,具有较高的匹配精度.将路径跟随算法用于耳廓特征图的匹配问题:首先,基于PCA方法构造耳廓点云的显著性关键点集合;然后,采用乘积型参数域上的单值二次曲面方法拟合关键点邻域内的点集,并将曲面的局部形状特征定义为耳廓的局部形状相似测度;第三,对关键点集合进行Delaunay三角剖分,得到关键点集合在三维空间内的拓扑结构图,并定义关键点图的整体结构差异测度;最后,记耳廓关键点图的组合差异测度为关键点图的整体结构差异测度与关键点上的局部形状相似测度的线性组合,并基于路径跟随算法快速求解关键点图之间的精确匹配.相关实验结果表明:与其他相关算法相比,该算法具有较高的匹配效率和匹配精度.

    Abstract:

    Combining the convex and relaxations, and following the solution path of convex-concave problem, the path following algorithm exhibits an excellent accuracy on graph matching approximately. In this paper, the path following algorithm is employed to address the problem of ear matching. Firstly, the PCA method is used to construct the set of salient keypoints of 3D ear point cloud data. Then the neighborhood of each keypoint is fitted to a single-valued quadric surface on a tensor-product parameter domain to define the local shape feature on the surface as the similarity measures. Next, the keypoints are triangulated into 3D topological graph using Delaunay triangulation, and the global structure discrepancy on the graph is obtained. Finally, the overall similarity measure is marked as the linear interpolation combination of the graph structure discrepancy and the local shape feature discrepancy, and the path following algorithm is then used to address the optimal matching between two keypoint graphs. The experiments show that the presented method provides a better matching result in terms of efficiency and accuracy than other similar approaches.

    参考文献
    [1] Ross A, Abaza A. Human ear recognition. IEEE Computer, 2011,44(11):79-81. [doi: 10.1109/MC.2011.344]
    [2] Victor B, Bowyer K, Sarkar S. An evaluation of face and ear biometrics. In: Proc. of the Int'l Conf. on Pattern Recognition. 2002. 429-432. [doi: 10.1109/ICPR.2002.1044746]
    [3] Yuan L, Mu Z, Zhang Y, Lie K. Ear recognition using improved non-negative matrix factorization. In: Proc. of the Int'l Conf. on Pattern Recognition. 2006. 501-504. [doi: 10.1109/ICPR.2006.1198]
    [4] Choras M. Ear biometrics based on geometrical feature extraction. Electronic Letters on Computer Vision and Image Analysis, 2005,5(3):84-95.
    [5] Bustard JD, Nixon MS. Toward unconstrained ear recognition from two-dimensional images. IEEE Trans. on SMC—Part A, 2010, 40(3):486 -494. [doi: 10.1109/TSMCA.2010.2041652]
    [6] Best PJ, McKay ND. A method for registration of 3D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1992,14(2):239-256. [doi: 10.1109/34.121791]
    [7] Chen H, Bhanu B. Contour matching for 3D ear recognition. In: Proc. of the IEEE Workshop on Application of Computer Vision. 2005. 123-128. [doi: 10.1109/ACVMOT.2005.38]
    [8] Chen H, Bhanu B. Human ear recognition in 3D. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007,29(4):718-737. [doi: 10.1109/TPAMI.2007.1005]
    [9] Mian A, Bennamoun M, Owens R. Keypoint detection and local feature matching for textured 3D face recognition. Int'l Journal of Computer Vision, 2008,79(1):1-12. [doi: 10.1007/s11263-007-0085-5]
    [10] Islam SMS, Davies R, Bennamoun M, Mian AS. Efficient detection and recognition of 3D ears. Int'l Journal of Computer Vision, 2011,95(1):52-73. [doi: 10.1007/s11263-011-0436-0]
    [11] Cordella LP, Foggia P, Sansone C, Vento M. A (sub) graph isomorphism algorithm for matching large graphs. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004,26(10):1367-1372. [doi: 10.1109/TPAMI.2004.75]
    [12] Weber M, Liwicki M, Dengel A. Faster subgraph isomorphism detection by well-founded total indexing. Pattern Recognition Letters, 2012,33(15):2011-2019. [doi: 10.1016/j.patrec.2012.04.017]
    [13] Abu-Khzam FN, Samatova NF, Rizk MA, Langston MA. The maximum common subgraph problem: Faster solutions via vertex cover. In: Proc. of the IEEE/ACS Int'l Conf. on Computer Systems and Applications. 2007. 367-373. [doi: 10.1109/AICCSA.2007. 370907]
    [14] Akutsu T, Tamura T. A polynomial-time algorithm for computing the maximum common connected edge subgraph of outer planar graphs of bounded degree. Algorithms, 2013,6(1):119-135. [doi: 10.3390/a6010119]
    [15] Knossow D, Sharma A, Mateus D, Horaud R. Inexact matching of large and sparse graphs using laplacian eigenvectors. In: Proc. of the 7th IAPR-TC-15 Int'l Workshop on Graph-Based Representations in Pattern Recognition. 2009. 144-153. [doi: 10.1007/978-3- 642-02124-4_15]
    [16] Zhu YY, Qin L, Yu JX, Ke YP, Lin XM. High efficiency and quality large graphs matching. In: Proc. of the 20th ACM Int'l Conf. on Information and Knowledge Management. 2011. 1157-1764. [doi: 10.1145/2063576.2063831]
    [17] Tang J, Jiang B, Luo B. Graph matching based on graph histogram and path similarity. Journal of Computer-Aided Design and Computer Graphics, 2011,23(9):1481-1489 (in Chinese with English abstract).
    [18] Liu ZY, Qiao H, Xu L. An extended path following algorithm for graph-matching problem. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012,34(7):1451-1456. [doi: 10.1109/TPAMI.2012.45]
    [19] Zaslavskiy M, Bach F, Vert JP. A path following algorithm for graph matching problem. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31(12):2227-2242. [doi: 10.1109/TPAMI.2008.245]
    [20] D'Erico J. Surface fitting using gridfit. MATLAB Central File Exchange Select, 2006.
    [21] Frank M, Wolfe P. An algorithm for quadratic programming. Naval Research Logistics Quarterly, 1956,3(1-2):95-110. [doi: 10. 1002/nav.3800030109]
    [22] Umeyama S. An eigen decomposition approach to weighted graph matching problems. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1988,10(5):695-703. [doi: 10.1109/34.6778]
    [23] Zaslavskiy M, Bach F, Vert JP. Global alignment of protein-protein interaction networks by graph matching method. Bioinformatics, 2009,25(12):1-14. [doi: 10.1093/bioinformatics/btp234]
    [24] Schellewald C, Roth S, Schnor C. Evaluation of convex optimization techniques for the weighted graph-matching problem in computer vision. Pattern Recognition, 2001,2191:361-368. [doi: 10.1007/3-540-45404-7_48]
    [25] Yan P, Bowyer KW. Biometric recognition using three dimensional ear shape. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007,29(8):1297-1308. [doi: 10.1109/TPAMI.2007.1067]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙晓鹏,李思慧,王璐,韩枫,魏小鹏.耳廓点云形状特征匹配的路径跟随算法.软件学报,2015,26(5):1251-1264

复制
相关视频

分享
文章指标
  • 点击次数:3285
  • 下载次数: 5363
  • HTML阅读次数: 1321
  • 引用次数: 0
历史
  • 收稿日期:2014-01-16
  • 最后修改日期:2014-07-08
  • 在线发布日期: 2015-05-06
文章二维码
您是第19986364位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号