基于软集的无标记信息代数模型与算法
作者:
基金项目:

国家自然科学基金(11271237, 61228305, 11201278); 陕西省自然科学基金(2014JQ9372)


Domain-Free Information Algebraic Model and Algorithm Based on Soft Set
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在给定的一个初始论域U和参数集E上的全体软集中引入扩展运算与转移运算,研究了它们的性质.在此基础上引入商软集的概念,并在全体商软集中引入联合运算与聚焦运算,得到其构成一个无标记的信息代数,并且若参数集E有限,这个信息代数还是一个无标记的紧信息代数.最后,给出运用无标记信息代数的模型解决软集中不确定问题的决策算法与实例,并与Cagman等人提出的uni-int决策算法做了比较说明.

    Abstract:

    Firstly, the operations of extension and transition in soft set over the universe U and the parameter E are proposed and some related properties are derived. Secondly, it is proved that the quotient soft set with the operations of combination and focusing is a domain-free information algebra. Moreover, the algebra is also compact if the set of all possible parameters is finite. Finally, an algorithm of decision making in term of the model of domain-free information algebra is presented and a corresponding example is provided to show that this model can be successfully applied to many problems. A comparison between the proposed algorithm and Cagman's uni-int decision making is illustrated in the end.

    参考文献
    [1] Molodtsov D. Soft set theory-first results. Computers and Mathematics with Applications, 1999,37(4):19-31. [doi: 10.1016/S0898- 1221(99)00056-5]
    [2] Ahmad B, Kharal A. On fuzzy soft sets. In: Proc. of the Advances in Fuzzy Systems. 2009. 1-6. [doi: 10.1155/2009/586507]
    [3] Maji PK, Biswas R, Roy AR. Intuitionistic fuzzy soft sets. Journal of Fuzzy Mathematics, 2001,9(3):677-691.
    [4] Majumdar P, Samanta SK. Generalised fuzzy soft sets. Computers and Mathematics with Applications, 2010,59(4):1425-1432. [doi: 10.1016/j.camwa.2009.12.006]
    [5] Cagman N, Citak F, Enginoglu S. Fuzzy parameterized fuzzy soft set theory and its applications. Turkish Journal of Fuzzy Systems, 2010,1(1):21-35.
    [6] Ali MI, Feng F, Liu XY, Min WK, Shabir M. On some new operations in soft set theory. Computers and Mathematics with Applications, 2009,57(9):1547-1553. [doi: 10.1016/j.camwa.2008.11.009]
    [7] Qin KY, Hong ZY. On soft equality. Computers and Mathematics with Applications, 2010,234:1347-1355. [doi: 10.1016/j.cam. 2010.02.028]
    [8] Sezgin A, Atagun AO. Soft groups and normalistic soft groups. Computers and Mathematics with Applications, 2011,62:685-698. [doi: 10.1016/j.camwa.2011.05.050]
    [9] Acar U, Koyuncu F, Tanay B. Soft sets and soft rings. Computers and Mathematics with Applications, 2010,59(11):3458-3463. [doi: 10.1016/j.camwa.2010.03.034]
    [10] Jun YB. Soft BCK/BCI-algebras. Computers and Mathematics with Applications, 2008,56(5):1408-1413. [doi: 10.1016/j.camwa. 2008.02.035]
    [11] Feng F. The fusion study on uncertain theory based on soft set [Ph.D. Thesis]. Xi'an: Shaanxi Normal University, 2011 (in Chinese with English abstract).
    [12] Maji PK, Roy AR, Biswas R. An application of soft sets in a decision making problem. Computers and Mathematics with Applications, 2002,44(8):1077-1083. [doi: 10.1016/S0898-1221(02)00216-X]
    [13] Roy AR, Maji PK. A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics, 2007,203(2):412-418. [doi: 10.1016/j.cam.2006.04.008]
    [14] Kong Z, Gao L, Wang L. Comment on “A fuzzy soft set theoretic approach to decision making problems”. Journal of Computational and Applied Mathematics, 2009,223(2):540-542. [doi: 10.1016/j.cam.2008.01.011]
    [15] Feng F, Jun YB, Liu XY, Li LF. An adjustable approach to fuzzy soft set based decision making. Journal of Computational and Applied Mathematics, 2010,234:10-20. [doi: 10.1016/j.cam.2009.11.055]
    [16] Feng F, Li YM, Leoreanu-Fotea V. Application of level soft sets in decision making based on interval-valued fuzzy soft sets. Computers and Mathematics with Applications, 2010,60(6):1756-1767. [doi: 10.1016/j.camwa.2010.07.006]
    [17] Cagman N, Enginoglu S. Soft matrix theory and its decision making. Computers and Mathematics with Applications, 2010,59(10): 3308-3314. [doi: 10.1016/j.camwa.2010.03.015]
    [18] Cagman N, Enginoglu S. Soft set theory and uni-int decision making. European Journal of Operational Research, 2010,207(2): 848-855. [doi: 10.1016/j.ejor.2010.05.004]
    [19] Kohlas J. Information Algebras: Generic Structures for Inference. Springer-Verlag, 2003. [doi: 10.1007/978-1-4471-0009-6]
    [20] Kohlas J. Lecture notes on the algebraic theory of information. 2010. http://diuf.unifr.ch/drupal/tns/sites/diuf.unifr.ch.drupaltns/ files/file/kohlas/main.pdf
    [21] Pouly M. A generic architecture for local computation [MS. Thesis]. Fribourg: Department of Informatics, University of Fribourg, 2004.
    [22] Pouly M. A generic framework for local computation [Ph.D. Thesis]. Fribourg: Department of Informatics, University of Fribourg, 2008.
    [23] Guan XC, Li YM, Feng F. A new order relation on fuzzy soft sets and its application. Soft Computing, 2013,17(1):63-70. [doi: 10. 1007/s00500-012-0903-8]
    [24] Guan XC. The study of some questions aboat valuation algebra [Ph.D. Thesis]. Xi'an: Shaanxi Normal University, 2011 (in Chinese with English abstract).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许格妮,李永明,管雪冲.基于软集的无标记信息代数模型与算法.软件学报,2015,26(5):1037-1047

复制
相关视频

分享
文章指标
  • 点击次数:2954
  • 下载次数: 4781
  • HTML阅读次数: 1219
  • 引用次数: 0
历史
  • 收稿日期:2013-11-28
  • 最后修改日期:2014-07-01
  • 在线发布日期: 2015-05-06
文章二维码
您是第19936823位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号