一种带混合进化机制的膜聚类算法
作者:
基金项目:

国家自然科学基金(61170030); 教育部春晖计划(Z2012031); 四川省科技支撑计划(2013GZX0155)


Membrane Clustering Algorithm with Hybrid Evolutionary Mechanisms
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    膜计算(也称为P系统或膜系统)是一种新颖的分布式、并行计算模型.为了处理数据聚类问题,提出了一种采用混合进化机制的膜聚类算法.它使用了一个由3个细胞组成的组织P系统,为一个待聚类的数据集发现最优的簇中心.其对象表示候选的簇中心,并且这3个细胞分别使用了3种不同的进化机制:遗传算子、速度-位移模型和差分进化机制.然而,所使用的速度-位移模型和差分进化机制是结合了这个特殊膜结构和转运机制所提出的改进版本.这种混合进化机制能够增强系统中对象的多样性和改善收敛性能.在混合进化机制和转运机制控制下,这种膜聚类算法能够确定一个数据集的良好划分.所提出的膜聚类算法在3个人工数据集和5个真实数据集上被评估,并与k-means和几种进化聚类算法进行比较.统计显著性测试建立了所提出的膜聚类算法的优势.

    Abstract:

    Membrane computing, known as P systems or membrane systems, is a novel class of distributed and parallel computing models. This paper proposes a membrane clustering algorithm using hybrid evolutionary mechanisms to address data clustering problem. It uses a tissue P system consisting of three cells to find the optimal cluster centers for a data set to be clustered. Its object is used to express candidate cluster centers, and the three cells use three different evolutionary mechanisms: genetic operators, velocity-position model and differential evolution mechanism. Particularly, the velocity-position model and differential evolution mechanism used in the process are the improved versions proposed in this paper according to the special membrane structure and communication mechanism. The hybrid evolutionary mechanisms can enhance the diversity of objects in the system and improve the convergence performance. Under the control of the hybrid evolutionary mechanisms and communication mechanism, the membrane clustering algorithm can determine a good partition for a data set. The proposed membrane clustering algorithm is evaluated on three artificial data sets and five real-life data sets and compared with k-means and several evolutionary clustering algorithms. Statistical significance tests have been performed to establish the superiority of the proposed membrane clustering algorithm.

    参考文献
    [1] Gan G, Ma C, Wu J. Data Clustering: Theory, Algorithms, and Applications. SIAM, 2007.
    [2] Xu R, Wunsch D. Survey of clustering algorithm. IEEE Trans. on Neural Networks, 2005,16(3):645-678. [doi: 10.1109/TNN.2005. 845141]
    [3] Jain AK. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 2010,31(8):651-666. [doi: 10.1016/j.patrec.2009. 09.011]
    [4] Everitt B, Landau S, Leese M. Cluster Analysis. London: Arnold, 2001.
    [5] Saha S, Bandyopadhyay S. A symmetry based multiobjective clustering technique for automatic evolution of clusters. Pattern Recognition, 2010,43(3):738-751. [doi: 10.1016/j.patcog.2009.07.004]
    [6] Das S, Sil S. Kernel-Induced fuzzy clustering of image pixels with an improved different evolution algorithm. Information Sciences, 2010,180(8):1237-1256. [doi: 10.1016/j.ins.2009.11.041]
    [7] Naldi MC, Campello RJGB, Hruschka ER, Carvalho ACPLF. Efficiency issues of evolutionary k-means. Applied Soft Computing, 2011,11(8):1938-1952. [doi: 10.1016/j.asoc.2010.06.010]
    [8] Kanungo T, Mount D, Netanyahu NS, Piatko C, Silverman R, Wu A. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(7):881-892. [doi: 10.1109/TPAMI.2002. 1017616]
    [9] Wu X, Kumar V. The Top Ten Algorithms in Data Mining. Chapman and Hall/CRC, 2009.
    [10] Murthy CA, Chowdhury N. In search of optimal clusters using genetic algorithms. Parttern Recognition Letters, 1996,17(8):825-832. [doi: 10.1016/0167-8655(96)00043-8]
    [11] Maulik U, Bandyopadhyay S. Genetic algorithm based clustering technique. Pattern Recognition, 2000,33(9):1455-1465. [doi: 10.1016/S0031-3203(99)00137-5]
    [12] Bandyopdhyay S, Saha S. GAPS: A clustering method using a new point symmetry-based distance measure. Pattern Recognition, 2007,40(12):3430-3451. [doi: 10.1016/j.patcog.2007.03.026]
    [13] Bandyopdhyay S. Genetic algorithms for clustering and fuzzy clustering. Data Mining and Knowledge Discovery, 2011,1(6): 524-531. [doi: 10.1002/widm.47]
    [14] Chang D, Zhang X, Zheng C. A genetic algorithm with gene rearrangment for k-means clustering. Pattern Recognition, 2009,42(7): 1210-1222. [doi: 10.1016/j.patcog.2008.11.006]
    [15] Nguyen CD, Cios KJ. GAKREM: A novel hybrid clustering algorithm. Information Sciences, 2008,178(22):4205-4227. [doi: 10. 1016/j.ins.2008.07.016]
    [16] Laszlo M, Mukherjee S. A genetic algorithm that exchanges neighboring centers for k-means clustering. Pattern Recognition Latters, 2007,28(16):2359-2366. [doi: 10.1016/j.patrec.2007.08.006]
    [17] Kao YT, Zahara E, Kao IW. A hybridized approach to data clustering. Expert Systems with Applications, 2008,34(3): 1754-1762. [doi: 10.1016/j.eswa.2007.01.028]
    [18] Shelokar PS, Jayaraman VK, Kulkarni BD. An ant colony approach for clustering. Analytica Chimica Acta, 2004,509(2): 187-195. [doi: 10.1016/j.aca.2003.12.032]
    [19] Niknam T, Amiri B. An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Applied Soft Computing, 2010,10(1):183-197. [doi: 10.1016/j.asoc.2009.07.001]
    [20] Păun G. Computing with membranes. Journal of Computer and System Sciences, 2000,61(1):108-143. [doi: 10.1006/jcss.1999. 1693]
    [21] Păun G, Rozenberg G, Salomaa A. The Oxford Handbook of Membrane Computing. New York: Oxford University Press, 2010.
    [22] Freund R, Păun G, Pérez-Jiménez MJ. Tissue-Like P systems with channel-states. Theoretical Computer Science, 2005,330(1): 101-116. [doi: 10.1016/j.tcs.2004.09.013]
    [23] Ionescu M, Păun G, Yokomori T. Spiking neural P systems. Fundameta Informaticae, 2006,71(2-3):279-308.
    [24] Păun G, Pérez-Jiménez MJ. Membrane computing: Brief introduction, recent results and applications. BioSystems, 2006,85(1): 11-22. [doi: 10.1016/j.biosystems.2006.02.001]
    [25] Wang J, Zhou L, Peng H, Zhang GX. An extended spiking neural P system for fuzzy knowledge representation. Int'l Journal of Innovative Computing, Information and Control, 2011,7(7A):3709-3724.
    [26] Peng H, Wang J, Pérez-Jiménez MJ, Wang H, Shao J, Wang T. Fuzzy reasoning spiking neural P system for fault diagnosis. Information Sciences, 2013,235:106-116. [doi: 10.1016/j.ins.2012.07.015]
    [27] Wang J, Shi P, Peng H, Pérez-Jiménez MJ, Wang T. Weighted fuzzy spiking neural P systems. IEEE Trans. on Fuzzy Systems, 2013,21(2):209-220. [doi: 10.1109/TFUZZ.2012.2208974]
    [28] Peng H, Wang J, Pérez-Jiménez MJ, Shi P. A novel image thresholding method based on membrane computing and fuzzy entropy. Journal of Intelligent & Fuzzy Systems, 2013,24(2):229-237. [doi: 10.3233/IFS-2012-0549]
    [29] Davis L. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.
    [30] Kennedy J, Eberhart R. Particle swarm optimization. In: Proc. of the IEEE Int'l Conf. on Neural Network, Vol.4. Piscataway, 1995. 1942-1948. [doi: 10.1109/ICNN.1995.488968]
    [31] Price K, Storn R, Lampinen J. Different Evolution—A Practical Approach to Global Optimization. Berlin: Springer-Verlag, 2005. [doi: 10.1007/3-540-31306-0]
    [32] Zhang GX, Cheng JX, Gheorghe M, Meng Q. A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems. Applied Soft Computing, 2013,13(3):1528-1542. [doi: 10. 1016/j.asoc.2012.05.032]
    [33] Colomer AM, Margalida A, Pérez-Jiménez MJ. Population dynamics P systems (PDP) models: A standarized protocol for describing and applying novel bio-inspired computing tools. Plos One, 2013,8(4):1-13. [doi: 10.1371/journal.pone.0060698]
    [34] Frisco P, Gheorghe M, Pérez-Jiménez MJ. Applications of Membrane Computing in Systems and Synthetic Biology. Springer- Verlag, 2013. [doi: 10.1007/978-3-319-03191-0]
    [35] UCI datasets. http://www.ics.uci.edu/~mlearn/MLRepository.html
    [36] Chou CH, Su MC, Lai E. A new cluster validity measure and its application to image compression. Pattern Analysis and Applications, 2004,7(2):205-220. [doi: 10.1007/s10044-004-0218-1]
    [37] Hollander M, Wolfe DA. Nonparametric Statistical Methods. 2nd ed., 1999.
    引证文献
引用本文

彭宏,蒋洋,王军,Mario J. P&#;REZ-JIM&#;NEZ.一种带混合进化机制的膜聚类算法.软件学报,2015,26(5):1001-1012

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-10-28
  • 最后修改日期:2014-05-21
  • 在线发布日期: 2014-08-22
文章二维码
您是第19936840位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号