一种基于概率主题模型的命名实体链接方法
作者:
基金项目:

国家杰出青年科学基金(61325010); 国家高技术研究发展计划(863)(2014AA015203); 安徽省科技专项资金(13Z02008-5); 安徽省国际科技合作计划(1303063008); 安徽省科技攻关计划(1301022064); 安徽省自然科学基金(1408085QF110)


Topic Modeling Approach to Named Entity Linking
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    命名实体链接(named entity linking,简称NEL)是把文档中给定的命名实体链接到知识库中一个无歧义实体的过程,包括同义实体的合并、歧义实体的消歧等.该技术可以提升在线推荐系统、互联网搜索引擎等实际应用的信息过滤能力.然而,实体数量的激增给实体消歧等带来了巨大挑战,使得当前的命名实体链接技术越来越难以满足人们对链接准确率的要求.考虑到文档中的词和实体往往具有不同的语义主题(如“苹果”既能表示水果又可以是某电子品牌),而同一文档中的词与实体应当具有相似的主题,因此提出在语义层面对文档进行建模和实体消歧的思想.基于此设计一种完整的、基于概率主题模型的命名实体链接方法.首先,利用维基百科(Wikipedia)构建知识库;然后,利用概率主题模型将词和命名实体映射到同一个主题空间,并根据实体在主题空间中的位置向量,把给定文本中的命名实体链接到知识库中一个无歧义的命名实体;最后,在真实的数据集上进行大量实验,并与标准方法进行对比.实验结果表明:所提出的框架能够较好地解决了实体歧义问题,取得了更高的实体链接准确度.

    Abstract:

    Named entity linking (NEL) is an advanced technology which links a given named entity to an unambiguous entity in the knowledge base, and thus plays an important role in a wide range of Internet services, such as online recommender systems and Web search engines. However, with the explosive increasing of online information and applications, traditional solutions of NEL are facing more and more challenges towards linking accuracy due to the large number of online entities. Moreover, the entities are usually associated with different semantic topics (e.g., the entity “Apple” could be either a fruit or a brand) whereas the latent topic distributions of words and entities in same documents should be similar. To address this issue, this paper proposes a novel topic modeling approach to named entity linking. Different from existing works, the new approach provides a comprehensive framework for NEL and can uncover the semantic relationship between documents and named entities. Specifically, it first builds a knowledge base of unambiguous entities with the help of Wikipedia. Then, it proposes a novel bipartite topic model to capture the latent topic distribution between entities and documents. Therefore, given a new named entity, the new approach can link it to the unambiguous entity in the knowledge base by calculating their semantic similarity with respect to latent topics. Finally, the paper conducts extensive experiments on a real-world data set to evaluate our approach for named entity linking. Experimental results clearly show that the proposed approach outperforms other state-of-the-art baselines with a significant margin.

    参考文献
    [1] Hachey B, Radford W, Nothman J, Honnibal M, Curran JR. Evaluating entity linking with Wikipedia. Artificial Intelligence, 2013,194:130~150.
    [2] Rau LF. Extracting company names from text. In: Proc. of the 7th IEEE Conf. on Artificial Intelligence Application. IEEE Press, 1991. 29~32. [doi: 10.1109/caia.1991.120841]
    [3] Shen W, Wang JY, Luo P, Wang M. Linden: Linking named entities with knowledge base via semantic knowledge. In: Proc. of the 21st Int’l Conf. on World Wide Web. ACM Press, 2012. 449~458. [doi: 10.1145/2187836.2187898]
    [4] Milne D, Witten IH. Learning to link with Wikipedia. In: Proc. of the 17th ACM Conf. on Information and Knowledge Management. ACM Press, 2008. 509~518. [doi: 10.1145/1458082.1458150]
    [5] Bunescu RC, Pasca M. Using encyclopedic knowledge for named entity disambiguation. In: Proc. of the 7th Conf. of the European Chapter of the Association for Computational Linguistics. ACM Press, 2006. 9~16.
    [6] Milosavljevic M, Delort JY, Hachey B, Arunasalam B, Radford W, Curran JR. Automating financial surveillance. In: Proc. of the User Centric Media. Berlin, Heidelberg: Springer-Verlag, 2010. 305~311. [doi: 10.1007/978-3-642-12630-7_38]
    [7] Zheng J, Mao YH. Word sense tagging method based. Journal of Tsinghua University (Sci. & Tech.), 2001,41(3):117~120 (in Chinese with English abstract).
    [8] Guo Y, Che W, Liu T, Li S. A graph-based method for entity linking. In: Proc. of the 5th Int’l Joint Conf. on Natural Language Processing. 2011. 1010~1018.
    [9] Bekkerman R, McCallum A. Disambiguating Web appearances of people in a social network. In: Proc. of the 14th int’l Conf. on World Wide Web. ACM Press, 2005. 463~470. [doi: 10.1145/1060745.1060813]
    [10] Cucerzan S. Large-Scale named entity disambiguation based on Wikipedia data. In: Proc. of the 2007 Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. 2007. 708~716.
    [11] Lin D. An information-theoretic definition of similarity. In: Proc. of the 15th Int’l Conf. on Machine Learning. Morgan Kaufmann Publishers, Inc., 1998. 296~304.
    [12] Zhai K, Boyd-Graber J, Asadi N, Alkhouja M. Mr. LDA: A flexible large scale topic modeling package using variational inference in MapReduce. In: Proc. of the 21st Int’l Conf. on World Wide Web. ACM Press, 2012. 879~888. [doi: 10.1145/2187836.2187955]
    [13] Bagga A, Baldwin B. Entity-Based cross-document coreferencing using the vector space model. In: Proc. of the 17th Int’l Conf. on Computational Linguistics. ACM Press, 1998. 79~85. [doi: 10.3115/980451.980859]
    [14] Hasegawa T, Sekine S, Grishman R. Discovering relations among named entities from large corpora. In: Proc. of the 42nd Annual Meeting on Association for Computational Linguistics. ACM Press, 2004. 415. [doi: 10.3115/1218955.1219008]
    [15] Witten I, Milne D. An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. In: Proc. of the AAAI Workshop on Wikipedia and Artificial Intelligence: An Evolving Synergy. AAAI Press, 2008. 25~30.
    [16] Navigli R, Velardi P. Structural semantic interconnections: A knowledge-based approach to word sense disambiguation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005,27(7):1075~1086. [doi: 10.1109/TPAMI.2005.149]
    [17] Mimno D, Wallach HM, Naradowsky J, Smith DA, McCallum A. Polylingual topic models. In: Proc. of the 2009 Conf. on Empirical Methods in Natural Language Processing: Vol.2-Vol.2. ACM Press, 2009. 880~889. [doi: 10.3115/ 1699571.1699627]
    [18] Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika Press, 1970,57(1):97~109.
    [19] Neal RM. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report, CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.
    [20] Teh YW. A hierarchical Bayesian language model based on Pitman-Yor processes. In: Proc. of the 21st Int’l Conf. on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. ACM Press, 2006. 985~992. [doi: 10.3115/1220175.1220299]
    [21] Griffiths TL, Steyvers M. Finding scientific topics. Proc. of the National Academy of Sciences of the United States of America, 2004,101(Suppl. 1):5228~5235.
    [22] Robert CP, Casella G. Monte Carlo Statistical Methods. New York: Springer-Verlag, 2004.
    [23] Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK. An introduction to variational methods for graphical models. Machine Learning, 1999,37(2):183~233.
    [24] Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. The Journal of Machine Learning Research, 2003,3:993~1022. [doi: 10.1109/icdm.2008.75
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

怀宝兴,宝腾飞,祝恒书,刘淇.一种基于概率主题模型的命名实体链接方法.软件学报,2014,25(9):2076-2087

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-04-05
  • 最后修改日期:2014-05-14
  • 在线发布日期: 2014-09-09
文章二维码
您是第19728336位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号