基于类属属性的多标记学习算法
作者:
基金项目:

国家自然科学基金(61175049, 61222309); 教育部新世纪优秀人才支持计划(NCET-13-0130)


Label-Specific Features on Multi-Label Learning Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在多标记学习框架中,每个对象由一个示例(属性向量)描述,却同时具有多个类别标记.在已有的多标记学习算法中,一种常用的策略是将相同的属性集合应用于所有类别标记的预测中.然而,该策略并不一定是最优选择,原因在于每个标记可能具有其自身独有的特征.基于这个假设,目前已经出现了基于标记的类属属性进行建模的多标记学习算法LIFT.LIFT包含两个步骤:属属性构建与分类模型训练.LIFT首先通过在标记的正类与负类示例上进行聚类分析,构建该标记的类属属性;然后,使用每个标记的类属属性训练对应的二类分类模型.在保留LIFT分类模型训练方法的同时,考察了另外3种多标记类属属性构造机制,从而实现LIFT算法的3种变体——LIFT-MDDM,LIFT-INSDIF以及LIFT-MLF.在12个数据集上进行了两组实验,验证了类属属性对多标记学习系统性能的影响以及LIFT采用的类属属性构造方法的有效性.

    Abstract:

    In the framework of multi-label learning, each example is represented by a single instance (feature vector) while simultaneously associated with multiple class labels. A common strategy adopted by most existing multi-label learning algorithms is that the very feature set of each example is employed in the discrimination processes of all class labels. However, this popular strategy might be suboptimal as each label is supposed to possess specific characteristics of its own. Based on this assumption, a multi-label learning algorithm named LIFT is proposed, in which label specific feature of each label is utilized in the discrimination process of the corresponding label. LIFT contains two steps: label-specific features construction and classification models induction. LIFT constructs the label-specific features by querying the clustering results and then induces the classification model with the corresponding label-specific features. In this paper, three variants of LIFT are studied, all employ other label-specific feature construction mechanisms while retaining the classification models induction process of LIFT. To validate the general helpfulness of label-specific feature mechanism to multi-label learning and the effectiveness of those label-specific features adopted by LIFT, two groups of experiments are conducted on a total of twelve multi-label benchmark datasets.

    参考文献
    [1] Tsoumakas G, Katakis I, Vlahavas I. Mining Multi-Label Data. Data Mining and Knowledge Discovery Handbook. 2nd ed., Berlin: Springer-Verlag, 2010. 667~685. [doi: 10.1007/978-0-387-09823-4_34]
    [2] McMallum A. Multi-Label text classification with a mixture model trained by EM. In: Proc. of the Working Notes of the AAAI’99 Workshop on Text Learning. Orlando, 1999.
    [3] Schapire RE, Singer Y. Boostexter: A boosting-based system for text categorization. Machine Learning, 2000,39(2):135~168. [doi: 10.1023/A:1007649029923]
    [4] Jiang JY, Tsai SC, Lee SJ. FSKNN: Multi-Label text categorization based on fuzzy similarity and k nearest neighbors. Expert Systems with Applications, 2012,39(3):2813~2821. [doi: 10.1016/j.eswa.2011.08.141]
    [5] Boutell MR, Luo J, Shen X, Brown CM. Learning multi-label scene classification. Pattern Recognition, 2004,37(9):1757~1771. [doi: 10.1016/j.patcog.2004.03.009]
    [6] Wang M, Zhou X, Chua TS. Automatic image annotation via local multi-label classification. In: Proc. of the 7th ACM Int’l Conf. on Image and Video Retrieval. Niagara Falls, 2008. 17~26. [doi: 10.1145/1386352.1386359]
    [7] Bao BK, Ni B, Mu Y, Yan S. Efficient region-aware large graph construction towards scalable multi-label propagation. Pattern Recognition, 2011,44(3):598~606. [doi: 10.1016/j.patcog.2010.10.001]
    [8] Zhang ML, Zhou ZH. A review on multi-label learning algorithms. IEEE Trans. on Knowledge and Data Engineering, 2014,26(8): 1819~1837. [doi: 10.1109/TKDE.2013.39]
    [9] Zhang ML. LIFT: Multi-label learning with label-specific features. In: Proc. of the 22nd Int’l Joint Conf. on Artificial Intelligence. Barcelona, 2011. 1609~1614. [doi: 10.5591/978-1-57735-516-8/IJCAI11-270]
    [10] Zhang ML, Zhang K. Multi-Label learning by exploiting label dependency. In: Proc. of the 16th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2010. 999~1008. [doi: 10.1145/1835804.1835930]
    [11] Huang SJ, Zhou ZH. Multi-Label learning by exploiting label correlations locally. In: Proc. of the 26th AAAI Conf. on Artificial Intelligence. 2012. 949~955.
    [12] Guo YH, Gu SC. Multi-Label classification using conditional dependency networks. In: Proc. of the 22nd Int’l Joint Conf. on Artificial Intelligence. 2011. 1300~1305. [doi: 10.5591/978-1-57735-516-8/IJCAI11-220]
    [13] Zhang Y, Zhou ZH. Multi-Label dimensionality reduction via dependency maximization. ACM Trans. on Knowledge Discovery from Data, 2010,4(3):Article 14. [doi: 10.1145/1839490.1839495]
    [14] Zhou ZH, Zhang ML, Huang SJ, Li YF. Multi-Instance multi-label learning. Artificial Intelligence, 2012,176(1):2291~2320. [doi: 10.1016/j.artint.2011.10.002]
    [15] Zhang ML, Zhou ZH. Multi-Label learning by instance differentiation. In: Proc. of the 22nd AAAI Conf. on Artificial Intelligence. Vancouver, 2007. 669~674.
    [16] Yang Y, Gopal S. Multilabel classification with meta-level features in a learning-to-rank framework. Machine Learning, 2012, 88(1-2):47~68.
    [17] Read J, Pfahringer B, Helms G, Frank E. Classifier chains for multi-label classification. Machine Learning, 2011,85(3):333~359. [doi: 10.1007/s10994-011-5256-5]
    [18] Yang Y, Pedeson JO. A comparative study on feature selection in text categorization. In: Proc. of the 14th Int’l Conf. on Machine Learning. 1997. 412~420.
    [19] Ghamrawi N, McCallum A. Collective multi-label classification. In: Proc. of the 14th ACM Int’l Conf. on Information and Knowledge Management. 2005. 195~200. [doi: 10.1145/1099554.1099591]
    [20] Godbole S, Sarawagi S. Discriminative methods for multi-labeled classification. In: Proc. of the Advances in Knowledge Discovery and Data Mining. LNCS 3056, 2004. 22~30. [doi: 10.1007/978-3-540-24775-3_5]
    [21] Tsoumakas G, Vlahavas I. Random k-labelsets: An ensemble method for multilabel classification. In: Proc. of the Machine Learning: ECML 2007. LNCS 4701, 2007. 406~417. [doi: 10.1007/978-3-540-74958-5_38]
    [22] Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. 1982, 143(1): 29~36.
    [23] Zhang ML, Zhou ZH. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 2007,40(7):2038~2048. [doi: 10.1016/j.patcog.2006.12.019]
    [24] Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM Trans. on Intelligent Systems and Technology, 2011, 2(3):Article 27.
    [25] Furnkranz J, Hullermeierm E, Mencia EL, Brinker K. Multilabel classification via calibrated label ranking. Machine Learning, 2008,73(2):133~153. [doi: 10.1007/s10994-008-5064-8]
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴磊,张敏灵.基于类属属性的多标记学习算法.软件学报,2014,25(9):1992-2001

复制
分享
文章指标
  • 点击次数:5414
  • 下载次数: 8118
  • HTML阅读次数: 2408
  • 引用次数: 0
历史
  • 收稿日期:2014-04-04
  • 最后修改日期:2014-05-14
  • 在线发布日期: 2014-09-09
文章二维码
您是第19727649位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号