网络水军识别研究
作者:
基金项目:

国家自然科学基金(61170112);北京市属高等学校高层次人才引进与培养计划(CIT&TCD201304034);民政部减灾和应急工程重点实验室开放基金(LDRERE20120105)


Overview of Web Spammer Detection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [113]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    网络水军识别关键技术已成为当前数据挖掘领域最为活跃的研究之一.如何挖掘海量用户信息中潜藏的网络水军特征与行为模式,从而发现网络水军,以维护良好的网络环境,保障合理的网络秩序,已成为一项十分具有挑战性的工作.对比传统与新型网络水军识别研究,从识别特征角度对近几年内网络水军识别研究进展进行综述,对其关键技术和效用评价进行了前沿概括、比较和分析,并对网络水军识别中有待深入研究的难点和发展趋势进行了展望.

    Abstract:

    With its rising popularity, as evidenced in social networks, online shopping platforms and email systems, detection of Web spammer has already become one of the hottest topics in the data mining field. The main challenge of Web spammer detection is how to recognize spammer behavior patterns by examining spammer features and attributes from big dataset in order to limit the proliferation of Internet spam and insure quality of Internet service. This paper presents an overview of Web spammer detection, along with a comparison over the difference between traditional and burgeoning spammer detection approaches. The key techniques and evaluation methods are classified and discussed from several aspects. At last, the prospects for future development and suggestions for possible extensions are emphasized.

    参考文献
    [1] Benevenuto F, Rodrigues T, Almeida V, Almeida J, Zhang C, Ross K. Identifying video spammers in online social networks. In: Castillo C, Chellapilla K, Fetterly D, eds. Proc. of the 4th Int'l Workshop on Adversarial Information Retrieval on the Web (AIRWeb 2008). New York: ACM Press, 2008. 45-52.[doi: 10.1145/1451983.1451996]
    [2] Stringhini G, Kruegel C, Vigna G. Detecting spammers on social networks. In: Gates C, Franz M, McDermott J, eds. Proc. of the 26th Annual Computer Security Applications Conf. (ACSAC 2010). New York: ACM Press, 2010. 1-9.[doi: 10.1145/1920261. 1920263]
    [3] Benevenuto F, Magno G, Rodrigues T, Almeida V. Detecting spammers on Twitter. In: Proc. of the 7th Annual Collaboration Electronic Messaging, Anti-Abuse and Spam Conf. (CEAS 2010), Vol.6. 2010. 12-20. http://ceas.cc/2010/
    [4] Mukherjee A, Liu B, Glance N. Spotting fake reviewer groups in consumer reviews. In: Mille A, Gandon F, Misselis J, Rabinovich M, Staab S, eds. Proc. of the 21st Int'l Conf. on World Wide Web (WWW 2012). New York: ACM Press, 2012. 191-200.[doi: 10.1145/2187836.2187863]
    [5] Gammereldin SEA, Musa MEM. Analyzing and revealing spammer accounts in email social network: SUST Mail case. In: Proc. of the 2nd Int'l Conf. on Information and Communication Technology. Khartoum: Ministry of Communications and Information Technology, 2011. 3-11.
    [6] Las-Casas PHB, Guedes D, Almeida JM, Ziviani A, Marques-Neto HT. SpaDeS: Detecting spammers at the source network. Computer Networks, 2012,57(2):526-539.[doi: 10.1016/j.comnet.2012.07.015]
    [7] Wang G, Xie S, Liu B, Yu PS. Review graph based online store review spammer detection. In: Cook D, Pei J, Wang W, Zaiane O, Wu X, eds. Proc. of the 11th Int'l Conf. on Data Mining (ICDM 2011). Washington: IEEE Computer Society, 2011. 1242-1247.[doi: 10.1109/ICDM.2011.124]
    [8] Song J, Lee S, Kim J. Spam filtering in Twitter using sender-receiver relationship. In: Sommer R, Balzarotti D, Maier G, eds. Proc. of the 14th Int'l Symp. on Recent Advances in Intrusion Detection (RAID 2011). Heidelberg: Springer-Verlag, 2011. 301-317.[doi: 10.1007/978-3-642-23644-0_16]
    [9] Zinman A, Donath J. Is britney spears spam. In: Proc. of the 4th Conf. on Email and Anti-Spam (CEAS 2007). 2007. 1-10. http://ceas.cc/2007/
    [10] Wang AH. Don't follow me: Spam detection in Twitter. In: Katsikas S, Samarati P, eds. Proc. of the 2010 Int'l Conf. on Security and Cryptography (SECRYPT 2010). Washington: IEEE Computer Society, 2010. 1-10.
    [11] Xu C, Zhang J, Chang K, Long C. Uncovering collusive spammers in Chinese review Websites. In: He Q, Iyengar A, Nejdl W, eds. Proc. of the 22nd ACM Conf. on Information and Knowledge Management (CIKM 2013). New York: ACM Press, 2013. 979-988.[doi: 10.1145/2505515.2505700]
    [12] Lim EP, Nguyen VA, Jindal N, Liu B, Lauw HW. Detecting product review spammers using rating behaviors. In: Huang J, Koudas N, Jones G, Wu X, Collins-Thompson K, An A, eds. Proc. of the 19th ACM Int'l Conf. on Information and Knowledge Management (CIKM 2010). New York: ACM Press, 2010. 939-948.[doi: 10.1145/1871437.1871557]
    [13] Gilbert E, Karahalios K. Understanding deja reviewers. In: Inkpen K, Gutwin C, Tang J, eds. Proc. of the ACM Conf. on Computer Supported Cooperative Work (CSCW 2010). New York: ACM Press, 2010. 225-228.[doi: 10.1145/1718918.1718961]
    [14] Akoglu L, Chandy R, Faloutsos C. Opinion fraud detection in online reviews by network effects. In: Kiciman E, Ellison NB, Hogan B, eds. Proc. of the 7th Int'l Conf. on Weblogs and Social Media (ICWSM 2013). Menlo Park: AAAI Press, 2013. 2-11.
    [15] Webb S, Caverlee J, Pu C. Social honeypots: Making friends with a spammer near you. In: Proc. of the 5th Conf. on Email and Anti-Spam (CEAS 2008). 2008. 1-10. http://ceas.cc/2008/
    [16] Lee K, Caverlee J, Webb S. Uncovering social spammers: social honeypots+ machine learning. In: Crestani F, Marchand-Maillet S, Chen HH, Efthimiadis EN, Savoy J, eds. Proc. of the 33rd Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR 2010). New York: ACM Press, 2010. 435-442.[doi: 10.1145/1835449.1835522]
    [17] Ghosh S, Korlam G, Ganguly N. Spammers' networks within online social networks: A case-study on Twitter. In: Sadagopan S, Ramamritham K, Kumar A, Ravindra MP, Bertino E, Kumar R, eds. Proc. of the 20th Int'l Conf. on World Wide Web (WWW 2011). New York: ACM Press, 2011. 41-42.[doi: 10.1145/1963192.1963214]
    [18] Duan Z, Chen P, Sanchez F, Dong Y, Stephenson M, Barker JM. Detecting spam zombies by monitoring outgoing messages. IEEE Trans. on Dependable and Secure Computing (TDSC 2012), 2012,9(2):198-210.[doi: 10.1109/TDSC.2011.49]
    [19] Zhu Y, Wang X, Zhong E, Liu NN, Li H, Yang Q. Discovering spammers in social networks. In: Hoffmann J, Selman B, eds. Proc. of 26th AAAI Conf. on Artificial Intelligence (AAAI 2012). Menlo Park: AAAI Press. 2012. 1-7.
    [20] Lu Y, Zhang L, Xiao Y, Li Y. Simultaneously detecting fake reviews and review spammers using factor graph model. In: Davis HC, Halpin H, Pentland A, eds. Proc. of the 5th Annual ACM Web Science Conf. (WebSci 2013). New York: ACM Press, 2013. 225-233.[doi: 10.1145/2464464.2464470]
    [21] Hayati P, Chai K, Potdar V, Talevski A. Behaviour-Based Web spambot detection by utilising action time and action frequency. In: Taniar D, Gervasi O, Murgante B, Pardede E, Apduhan BO, eds. Proc. of the Computational Science and Its Applications (ICCSA 2010). Heidelberg: Springer-Verlag, 2010. 351-360.[doi: 10.1007/978-3-642-12165-4_28]
    [22] Bouguessa M. An unsupervised approach for identifying spammers in social networks. In: Proc. of the 23rd IEEE Int'l Conf. on Tools with Artificial Intelligence (ICTAI 2011). Washington: IEEE Computer Society, 2011. 832-840.[doi: 10.1109/ICTAI. 2011.130]
    [23] Liu QW. Web spammers' detection and prevention. Press Outpost, 2012,6:021 (in Chinese with English abstract).
    [24] Halpin H, Blanco R. Machine-Learning for spammer detection in crowd-sourcing. Human Computation AAAI Technical Report, WS-12-08, Menlo Park: AAAI Press, 2012. 85-86.
    [25] Raykar VC, Yu S. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. The Journal of Machine Learning Research, 2012,13:491-518.
    [26] Langbehn HR, Ricci S, Gonçalves MA, Almeida JM, Pappa GL, Benevenuto F. A multi-view approach for detecting non- cooperative users in online video sharing systems. Journal of Information and Data Management, 2010,1(3):313-328.
    [27] Russell MA. Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google , GitHub, and More. 2nd ed., Sebastopol: O'Reilly Media, 2013. 5-43.
    [28] Jiang F, Du JW, Sui YF, Cao CG. Outlier detection based on boundary and distance. Acta Electronica Sinica, 2010,38(3):700-705 (in Chinese with English abstract).
    [29] Zhang L, Zhu J, Yao T. An evaluation of statistical spam filtering techniques. ACM Trans. on Asian Language Information Processing (TALIP), 2004,3(4):243-269.[doi: 10.1145/1039621.1039625]
    [30] Murmann AJ. Enhancing spammer detection in online social networks with trust-based metrics[MS. Thesis]. San Jose: San Jose State University, 2009.
    [31] Hayati P, Chai K, Potdar V, Talevski A. HoneySpam 2.0: Profiling Web spambot behaviour. In: Proc. of the Principles of Practice in Multi-Agent Systems. Heidelberg: Springer-Verlag, 2009. 335-344.[doi: 10.1007/978-3-642-11161-7_23]
    [32] Wang JH. Social Network Analysis for E-mail Filtering. 2006. 69-78. http://www.im.cpu.edu.tw/cyber06/cyber06-a6.pdf
    [33] Chang M, Yih W, Meek C. Partitioned logistic regression for spam filtering. In: Li Y, Liu B, Sarawagi S, eds. Proc. of the 14th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Minging (KDD 2008). New York: ACM Press, 2008. 97-105.[doi: 10.1145/1401890.1401907]
    [34] Balaguer EV, Rosso P. Detection of near-duplicate user generated contents: The SMS spam collection. In: Proc. of the 3rd Int'l Workshop on Search and Mining User-Generated Contents (SMUC 2011). New York: ACM Press, 2011. 27-34.[doi: 10.1145/2065023.2065031]
    [35] Sathawane KS, Tuteja RR. A robust spam detection system using a collaborative approach with an E-mail abstraction scheme and spam tree data structure. Int'l Journal of Computer Science and Applications, 2013,6(2):293-298.
    [36] Tseng CY, Sung PC, Chen MS. Cosdes: A collaborative spam detection system with a novel e-mail abstraction scheme. IEEE Trans. on Knowledge and Data Engineering, 2011,23(5):669-682.[doi: 10.1109/TKDE.2010.147]
    [37] Maan G, Tak G. Enhanced discussion on different techniques of spam detection. Int'l Journal of Computer and Technology, 2013, 4(2):248-253.
    [38] Wirtz BW, Mory L, Piehler R. Web 2.0 and digital business models. In: Martinez-Lopez FJ, ed. Handbook of Strategic e-Business Management. Heidelberg: Springer-Verlag, 2014. 751-766.[doi: 10.1007/978-3-642-39747-9_31]
    [39] Hayati P, Potdar V, Talevski A, Firoozeh N, Sarenche S, Yeganeh EA. Definition of spam 2.0: New spamming boom. In: Hussain FK, Chang E, eds. Proc. of the 4th IEEE Int'l Conf. on Digital Ecosystems and Technologies (IEEE DEST 2010). Washington: IEEE Computer Society, 2010. 580-584.[doi: 10.1109/DEST.2010.5610590]
    [40] Hayati P, Potdar V. Spam 2.0 state of the art. Int'l Journal of Digital Crime and Forensics, 2012,4(1):17-36.
    [41] Ridzuan F, Potdar V, Talevski A, Smyth WF. Key parameters in identifying cost of spam 2.0. In: Proc. of the 24th IEEE Int'l Conf. on Advanced Information Networking and Applications (AINA 2010). Washington: IEEE Computer Society, 2010. 789-796.[doi: 10.1109/AINA.2010.163]
    [42] Sriram B, Fuhry D, Demir E, Ferhatosmanoglu H, Demirbas M. Short text classification in Twitter to improve information filtering. In: Crestani F, Marchand-Maillet S, Chen HH, eds. Proc. of the 33rd Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR 2010). New York: ACM Press, 2010. 841-842.[doi: 10.1145/1835449.1835643]
    [43] Zhao YY, Qin B, Liu T. Sentiment analysis. Ruan Jian Xue Bao/Journal of Software, 2010,21(8):1834-1848 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3832.htm[doi: 10.3724/SP.J.1001.2010.03832]
    [44] Liu B. Sentiment analysis and subjectivity. In: Indurkhya N, Damerau FJ, eds. Handbook of Natural Language Processing. Boca Raton: CRC Press, 2010. 627-666.
    [45] Prince MB, Holloway L, Langheinrich E, Dahl BM, Keller AM. Understanding how spammers steal your e-mail address: An analysis of the first six months of data from project honey pot. In: Proc. of the 2nd Conf. on Email and Anti-Spam (CEAS 2005). 2005. 1-7. http://ceas.cc/2005/
    [46] Hayati P, Potdar V. Evaluation of spam detection and prevention frameworks for email and image spam—A state of art. In: Kotsis G, Taniar D, Pardede E, Khalil I, eds. Proc. of the 10th Int'l Conf. on Information Integration and Web-Based Applications & Services (iiWAS 2008). New York: ACM Press, 2008. 520-527.[doi: 10.1145/1497308.1497402]
    [47] Chen ZX. Survey on spam filtering technology. Application Research of Computers, 2009,26(5):1612-1615 (in Chinese with English abstract).
    [48] Almeida TA, Yamakami A, Almeida J. Probabilistic anti-spam filtering with dimensionality reduction. In: Shin SY, Ossowski S, Schumacher M, eds. Proc. of the 2010 ACM Symp. on Applied Computing (SAC 2010). New York: ACM Press, 2010. 1802-1806.[doi: 10.1145/1774088.1774469]
    [49] Almeida TA, Yamakami A. Content-Based spam filtering. In: Proc. of the 2010 Int'l Joint Conf. on Neural Networks (IJCNN 2010). Washington: IEEE Computer Society, 2010. 1-7.[doi: 10.1109/IJCNN.2010.5596569]
    [50] Li Z, Shen H. Soap: A social network aided personalized and effective spam filter to clean your e-mail box. In: Proc. of the 30th IEEE Int'l Conf. on Computer Communications (INFOCOM 2011). Washington: IEEE Computer Society, 2011. 1835-1843.[doi: 10.1109/INFCOM.2011.5934984]
    [51] Lu KS, Chang CK. Using Web search results and genetic algorithm to improve the accuracy of Chinese spam email filters. In: Proc. of the 35th Annual IEEE Int'l Workshop on Computer Software and Applications Conf. (COMPSACW 2011). Washington: IEEE Computer Society, 2011. 286-291.[doi: 10.1109/COMPSACW.2011.56]
    [52] Xu H, Yu B. Automatic thesaurus construction for spam filtering using revised back propagation neural network. Expert Systems with Applications, 2010,37(1):18-23.[doi: 10.1016/j.eswa.2009.02.059]
    [53] Duh A, Stiglic G, Korosak D. Enhancing identification of opinion spammer groups. In: Proc. of the Int'l Conf. on Making Sense of Converging Media (AcademicMindTrek 2013). New York: ACM Press, 2013. 326-328.[doi: 10.1145/2523429.2523437]
    [54] Lau RYK, Liao SY, Kwok RCW, Xu K, Xia Y, Li Y. Text mining and probabilistic language modeling for online review spam detection. ACM Trans. on Management Information Systems (TMIS), 2011,2(4):25.
    [55] Li F, Huang M, Yang Y, Zhu X. Learning to identify review spam. In: Walsh T, ed. Proc. of the 22nd Int'l Joint Conf. on Artificial Intelligence (IJCAI 2011), Vol.3. Menlo Park: AAAI Press, 2011. 2488-2493.[doi: 10.5591/978-1-57735-516-8/IJCAI11-414]
    [56] Liu HY, Zhao YY, Qin B, Liu T. Comment target extraction and sentiment classification. Journal of Chinese Information Processing, 2010,24(1):84-88 (in Chinese with English abstract).
    [57] Jindal N, Liu B, Lim EP. Finding unusual review patterns using unexpected rules. In: Huang J, Koudas N, Jones G, eds. Proc. of the 19th ACM Int'l Conf. on Information and Knowledge Management (CIKM 2010). New York: ACM Press, 2010. 1549-1552.[doi: 10.1145/1871437.1871669]
    [58] Ott M, Choi Y, Cardie C, Hancock JT. Finding deceptive opinion spam by any stretch of the imagination. In: Proc. of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Vol.1. Stroudsburg: ACL, 2011. 309-319.
    [59] Niu Y, Wang YM, Chen H, Ma M, Hsu F. A quantitative study of forum spamming using context-based analysis. In: Proc. of the Network and Distributed System Security Symp. (NDSS 2007). 2007. 1-14. http://www.internetsociety.org/events/ndss- symposium-2007
    [60] Mo Q, Zhang YJ, Hu HL, Zhang HP. Combined approach of polarity analysis on stock analyst. Computer Engineering and Applications, 2011,47(19):222-225 (in Chinese with English abstract).
    [61] Hu HL, Mo Q. Research on opinion classification of stock recommendations based on discourse structure. Journal of Chinese Computer Systems, 2009,30(5):899-902 (in Chinese with English abstract).
    [62] Bao J, Ji C, Gao M. Research on network security of defense based on Honeypot. In: Proc. of the 2010 Int'l Conf. on Computer Application and System Modeling (ICCASM 2010). Washington: IEEE Computer Society, 2010. 299-302.[doi: 10.1109/ICCASM. 2010.5622780]
    [63] Xie Y, Yu F, Achan K, Panigrahy R, Hulten G, Osipkov I. Spamming botnets: Signatures and characteristics. In: Bahl V, Wetherall D, Savage S, Stoica I, eds. Proc. of the ACM SIGCOMM 2008 Conf. on Data Communication (SIGCOMM 2008). New York: ACM Press, 2008. 171-182.[doi: 10.1145/1402958.1402979]
    [64] Bhat VH, Malkani VR, Shenoy PD, Venugopal KR, Patnaik LM. Classification of email using BeaKS: Behavior and keyword stemming. In: Proc. of the Int'l Technical Conf. of IEEE Asia Pacific Region (IEEE TENCON 2011). Washington: IEEE Computer Society, 2011. 1139-1143.[doi: 10.1109/TENCON.2011.6129290]
    [65] Stringhini G, Egele M, Kruegel C, Vigna G. Breaking the loop: Leveraging botnet feedback for spam mitigation. In: Proc. of the 7th Annual Graduate Student Workshop on Computing (GSWC 2012). Santa Barbara: University of California, 2012. 25-26.
    [66] Husna H, Phithakkitnukoon S, Palla S, Dantu R. Behavior analysis of spam botnets. In: Proc. of the 3rd Int'l Conf. on Communication Systems Software and Middleware and Workshops (COMSWARE 2008). Washington: IEEE Computer Society, 2008. 246-253.[doi: 10.1109/COMSWA.2008.4554418]
    [67] Sawaya Y, Kubota A, Yamada A. Understanding the time-series behavioral characteristics of evolutionally advanced email spammers. In: Yu T, Venkatakrishan VN, Kapadia A, eds. Proc. of the 5th ACM Workshop on Security and Artificial Intelligence (AISec 2012). New York: ACM Press, 2012. 71-80.[doi: 10.1145/2381896.2381908]
    [68] Qiu YF, Wang JK, Shao LS, Liu DY. Research on product review spammer detection based on users' behavior. Computer Engineering, 2012,38(11):254-261 (in Chinese with English abstract).
    [69] Mukherjee A, Kumar A, Liu B, Wang J, Hsu M, Castellanos M, Ghosh R. Spotting opinion spammers using behavioral footprints. In: Dhilon IS, Koren Y, Ghani R, eds. Proc. of the 19th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2013). New York: ACM Press, 2013. 632-640.[doi: 10.1145/2487575.2487580]
    [70] Parameswaran M, Rui H, Sayin S. A game theoretic model and empirical analysis of spammer strategies. In: Proc. of the 7th Annual Collaboration, Electronic Messaging, Anti-Abuse and Spam Conf. (CEAS 2010), Vol.7. 2010. 1-7. http://ceas.cc/2010/
    [71] Lee K, Eoff BD, Caverlee J. Seven months with the devils: A long-term study of content polluters on Twitter. In: Adamic LA, Baeza-Yates RA, Counts S, eds. Proc. of the 5th Int'l Conf. on Weblogs and Social Media (ICWSM). Menlo Park: AAAI Press, 2011. 185-192.
    [72] Sureka A. Mining user comment activity for detecting forum spammers in YouTube. arXiv preprint arXiv: 1103.5044, 2011.
    [73] Yang C, Harkreader RC, Gu G. Die free or live hard? Empirical evaluation and new design for fighting evolving Twitter spammers. In: Sommer R, Balzarotti D, Maier G, eds. Proc. of the 14th Int'l Symp. on Recent Advances in Intrusion Detection (RAID 2011). Heidelberg: Springer-Verlag, 2011. 318-337.[doi: 10.1007/978-3-642-23644-0_17]
    [74] Tan E, Guo L, Chen S, Zhang X, Zhao Y. Spammer behavior analysis and detection in user generated content on social networks. In: Proc. of the 32nd Int'l Conf. on Distributed Computing Systems (ICDCS 2012). Washington: IEEE Computer Society, 2012. 305-314.[doi: 10.1109/ICDCS.2012.40]
    [75] Gargari SM, Oguducu SG. A novel framework for spammer detection in social bookmarking systems. In: Proc. of the IEEE/ACM Int'l Conf. on Advances in Social Networks Analysis and Mining (ASONAM 2012). Washington: IEEE Computer Society, 2012. 827-834.[doi: 10.1109/ASONAM.2012.150]
    [76] Hayati P, Potdar V, Chai K, Talevski A. Web spambot detection based on Web navigation behaviour. In: Proc. of the 24th IEEE Int'l Conf. on Advanced Information Networking and Applications (AINA 2010). Washington: IEEE Computer Society, 2010. 797-803.[doi: 10.1109/AINA.2010.92]
    [77] Hayati P, Potdar V, Talevski A, Chai K. Characterisation of Web spambots using self organising maps. Int'l Journal of Computer Systems Science & Engineering, 2011,26(2):87-96.
    [78] Hayati P, Potdar V, Talevski A, Smyth WF. Rule-Based on-the-fly Web spambot detection using action strings. In: Proc. of Collaboration Electronic Messaging Anti-Abuse and Spam Conf. (CEAS 2010). 2010. 13-14. http://ceas.cc/2010/
    [79] Brendel R, Krawczyk H. Application of social relation graphs for early detection of transient spammers. WSEAS Trans. on Information Science & Applications, 2008,5(3):267-276.
    [80] Sadan Z, Schwartz DG. Social network analysis of Web links to eliminate false positives in collaborative anti-spam systems. Journal of Network and Computer Applications, 2011,34(5):1717-1723.[doi: 10.1016/j.jnca.2011.06.004]
    [81] Wang G, Xie S, Liu B, Yu PS. Identify online store review spammers via social review graph. ACM Trans. on Intelligent Systems and Technology (TIST), 2012,3(4):61.[doi: 10.1145/2337542.2337546]
    [82] Moh TS, Murmann AJ. Can you judge a man by his friends? Enhancing spammer detection on the Twitter microblogging platform using friends and followers. In: Prasad SK, Vin HM, Sahni S, eds. Proc. of the Int'l Conf. on Information Systems and Technology Management (ICISTM 2010). Heidelberg: Springer-Verlag, 2010. 210-220.[doi: 10.1007/978-3-642-12035-0_21]
    [83] Gayo-Avello D, Brenes DJ. Overcoming spammers in Twitter—A tale of five algorithms. In: Proc. of the Spanish Conf. on Information Retrieval (CERI 2010). 2010. 41-52. http://ir.ii.uam.es/ceri2010/en/
    [84] Krestel R, Chen L. Using co-occurrence of tags and resources to identify spammers. In: Saeys Y, Liu H, Inza I, eds. Proc. of the Discovery Challenge Workshop at the European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2008). Brookline: Microtome Publishing, 2008. 38-46.
    [85] Bhat SY, Abulaish M. Community-Based features for identifying spammers in online social networks. In: Rokne JG, Faloutsos C, eds. Proc. of the 2013 IEEE/ACM Int'l Conf. on Advances in Social Networks Analysis and Mining (ASONAM 2013). New York: ACM Press, 2013. 100-107.[doi: 10.1145/2492517.2492567]
    [86] Mukherjee A, Venkataraman V, Liu B, Glance N. What yelp fake review filter might be doing. In: Kiciman E, Ellison NB, Hogan B, eds. Proc. of the 7th Int'l AAAI Conf. on Weblogs and Social Media (ICWSM 2013). Menlo Park: AAAI Press, 2013. 409-418.
    [87] Ramachandran A, Feamster N. Understanding the network-level behavior of spammers. In: Rizzo L, Anderson T, McKeown N, eds. Proc. of the 2006 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM 2006). New York: ACM Press, 2006. 291-302.[doi: 10.1145/1151659.1159947]
    [88] Tseng CY, Huang JW, Chen MS. ProMail: Using progressive email social network for spam detection. In: Zhou Z, Li H, Yang Q, eds. Proc. of the 11th Pacific-Asia Conf. on Advances in Knowledge Discovery and Data Mining (PAKDD 2007). Heidelberg: Springer-Verlag, 2007. 833-840.[doi: 10.1007/978-3-540-71701-0_92]
    [89] Hao S, Syed NA, Feamster N, Gray AG, Krasser S. Detecting spammers with SNARE: Spatio-Temporal network-level automatic reputation engine. In: Proc. of the 18th USENIX Security Symp. Berkeley: USENIX Association, 2009. 101-118.
    [90] Uddin AHMM. Detecting botnets based on their behaviors perceived from netflow data. Tartu: University of Tartu, 2009. 1-17. http://courses.cs.ut.ee
    [91] Ehrlich WK, Karasaridis A, Liu D, Hoeflin D. Detection of spam hosts and spam bots using network flow traffic modeling. In: Proc. of the 3rd USENIX Conf. on Large-Scale Exploits and Emergent Threats: Botnets, Spyware, Worms, and More. Berkeley: USENIX Association, 2010. 7-15.
    [92] Schatzmann D, Burkhart M, Spyropoulos T. Inferring spammers in the network core. In: Moon SB, Teixeira R, Uhlig S, eds. Proc. of the 10th Int'l Conf. on Passive and Active Network Measurement (PAM 2009). Heidelberg: Springer-Verlag, 2009. 229-238.[doi: 10.1007/978-3-642-00975-4_23]
    [93] Xu KS, Kliger M, Hero III AO. Identifying spammers by their resource usage patterns. In: Proc. of the 7th Annual Collaboration Electronic Messaging, Anti-Abuse and Spam Conf. (CEAS 2010). 2010.
    [94] Jiang J, ZhuGe JW, Duan HX, Wu JP. Research on botnet mechanisms and defenses. Ruan Jian Xue Bao/Journal of Software, 2012, 23(1):82-96 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4101.htm[doi: 10.3724/SP.J.1001.2012.04101]
    [95] Li F, Hsieh MH. An empirical study of clustering behavior of spammers and group-based anti-spam strategies. In: Proc. of the 3rd Conf. on Email and Anti-Spam (CEAS 2006). 2006. http://ceas.cc/2006/
    [96] Xu C. Detecting collusive spammers in online review communities. In: Proc. of the 6th Ph.D. Students Workshop on Information and Knowledge Management (PIKM 2013). New York: ACM Press, 2013. 33-40.[doi: 10.1145/2513166.2513176]
    [97] Benevenuto F, Rodrigues T, Almeida V, Almeida J, Goncalves M. Detecting spammers and content promoters in online video social networks. In: Allan J, Aslam J, Sanderson M, Zhai C, Zobel J, eds. Proc. of the 32nd Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR 2009). New York: ACM Press, 2009. 620-627.[doi: 10.1145/1571941.1572047]
    [98] Amleshwaram AA, Reddy N, Yadav S, Gu G, Yang C. CATS: Characterizing automation of Twitter spammers. In: Proc. of the 5th Int'l Conf. on Communication Systems and Networks (COMSNETS 2013). Washington: IEEE Computer Society, 2013. 1-10.[doi: 10.1109/COMSNETS.2013.6465541]
    [99] Lin C, Zhou Y, Chen K, He J, Yang X, Song L. Analysis and identification of spamming behaviors in Sina Weibo microblog. In: Zhu F, He Q, Yan R, eds. Proc. of the 7th Workshop on Social Network Mining and Analysis (SNAKDD 2013). New York: ACM Press, 2013. 5-13.[doi: 10.1145/2501025.2501035]
    [100] Yang C, Harkreader R, Gu G. Empirical evaluation and new design for fighting evolving Twitter spammers. IEEE Trans. on Information Forensics and Security, 2013,(8):1280-1293.[doi: 10.1109/TIFS.2013.2267732]
    [101] Wang K, Xiao Y, Xiao Z. Detection of Internet water army in social network. In: Proc. of the 2014 Int'l Conf. on Computer, Communications and Information Technology (CCIT 2014). Amsterdam: Atlantis Press, 2014. 189-192.[doi: 10.2991/ccit-14. 2014.50]
    [102] Aggarwal A, Almeida J, Kumaraguru P. Detection of spam tipping behaviour on foursquare. In: Carr L, Laender AHF, Loscio BF, eds. Proc. of the 22nd Int'l Conf. on World Wide Web Companion (WWW 2013 Campanion). New York: ACM Press, 2013. 641-648.
    [103] Lee YJ, Shim JM, Cho HG, Woo G. Detecting and visualizing the dispute structure of the replying comments in the Internet forum sites. In: Proc. of the 2010 Int'l Conf. on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC 2010). Washington: IEEE Computer Society, 2010. 456-463.[doi: 10.1109/CyberC.2010.90]
    [104] Chen C, Wu K, Srinivasan V, Zhang X. Battling the Internet water army: Detection of hidden paid posters. In: Rokne JG, Faloutsos C, eds. Proc. of the 2013 IEEE/ACM Int'l Conf. on Advances in Social Networks Analysis and Mining (ASONAM 2013). New York: ACM Press, 2013. 116-120.[doi: 10.1145/2492517.2492637]
    [105] Jindal N, Liu B. Opinion spam and analysis. In: Najork M, Broder AZ, Chakrabarti S, eds. Proc. of the 2008 Int'l Conf. on Web Search and Data Mining (WSDM 2008). New York: ACM Press, 2008. 219-230.[doi: 10.1145/1341531.1341560]
    [106] Mukherjee A, Liu B, Wang J, Glance N, Jindal N. Detecting group review spam. In: Srinivasan S, Ramamritham K, Kumar A, eds. Proc. of the 20th Int'l Conf. Companion on World Wide Web. New York: ACM Press, 2011. 93-94.[doi: 10.1145/1963192. 1963240]
    [107] Xie S, Wang G, Lin S, Yu PS. Review spam detection via temporal pattern discovery. In: Yang Q, Agarwal D, Pei J, eds. Proc. of the 18th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2012). New York: ACM Press, 2012. 823-831.[doi: 10.1145/2339530.2339662]
    [108] Fei G, Mukherjee A, Liu B, Hsu M, Castellanos M, Ghosh R. Exploiting burstiness in reviews for review spammer detection. In: Kiciman E, Ellison NB, Hogan B, eds. Proc. of the 7th Int'l AAAI Conf. on Weblogs and Social Media (ICWSM 2013). Menlo Park: AAAI Press, 2013. 175-184.
    [109] Feng S, Xing L, Gogar A, Choi Y. Distributional footprints of deceptive product reviews. In: Breslin JG, Ellison NB, Shanahan JG, eds. Proc. of the 6th Int'l AAAI Conf. on Weblogs and Social Media (ICWSM 2012). Menlo Park: AAAI Press, 2012. 98-105.
    [110] Amleshwaram AA. Spammer detection on online social networks.[Ph.D. Thesis]. Texas: Texas A&M University, 2012.
    [111] Kizza JM. Ethical and Social Issues in the Information Age. 2nd ed., New York: Springer-Verlag, 2003. 255-280.[doi: 10.1007/b98842]
    [112] West W, Pulimood SM. Analysis of privacy and security in HTML5 Web storage. Journal of Computing Sciences in Colleges, 2012, 27(3):80-87.
    [113] Zhou Y, Chen K, Song L, Yang X, He J. Feature analysis of spammers in social networks with active honeypots: A case study of Chinese microblogging networks. In: Proc. of the 2012 IEEE/ACM Int'l Conf. on Advances in Social Networks Analysis and Mining (ASONAM 2012). Washington: IEEE Computer Society, 2012. 728-729.[doi: 10.1109/ASONAM.2012.133]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

莫倩,杨珂.网络水军识别研究.软件学报,2014,25(7):1505-1526

复制
分享
文章指标
  • 点击次数:9339
  • 下载次数: 17904
  • HTML阅读次数: 4300
  • 引用次数: 0
历史
  • 收稿日期:2013-06-14
  • 最后修改日期:2014-04-09
  • 在线发布日期: 2014-07-08
文章二维码
您是第19727885位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号