面向云计算数据中心的能耗建模方法
作者:
基金项目:

国家高技术研究发展计划(863)(2013AA01A210)


Energy Modeling Based on Cloud Data Center
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    云计算对计算能力的需求,促进了大规模数据中心的飞速发展.与此同时,云计算数据中心产生了巨大的能耗.由于云计算的弹性服务和可扩展性等特性,云计算数据中心的硬件规模近年来极度膨胀,这使得过去分散的能耗问题变成了集中的能耗问题.因此,深入研究云计算数据中心的节能问题具有重要意义.为此,针对云计算数据中心的能耗问题,提出了一种精确度高的能耗模型来预测云计算数据中心单台服务器的能耗状况.精确的能量模型是很多能耗感知资源调度方法的研究基础,在大多数现有的云计算能耗研究中,多采用线性模型来描述能耗和资源利用率之间的关系.然而随着云计算数据中心服务器体系结构的变化,能耗和资源使用率的关系已经难以用简单的线性函数来描述.因此,从处理器性能计数器和系统使用情况入手,结合多元线性回归和非线性回归的数学方法,分析总结了不同参数和方法对服务器能耗建模的影响,提出了适合云计算数据中心基础架构的服务器能耗模型.实验结果表明,该能耗模型在只监控系统使用率的情况下,在系统稳定后,能耗预测精度可达到95%以上.

    Abstract:

    Energy efficiency of cloud data centers has received significant attention recently as data centers often consume significant resources in operation. Most of the existing energy-saving algorithms focus on resource consolidation for energy efficiency. Accurate energy consumption model is the basis for these algorithms. This paper proposes an accurate energy model to predict energy consumption of single machine. In most of the existing cloud computing energy studies, linear models are used to describe the relationship between energy consumption and resource utilizations. However, with the changes in computer architecture, the relationship between energy and resource utilizations may not be linear. In fact, this paper explored a variety of regression analysis methods to estimate the energy consumption accurately while using low computational overhead. Initially, multiple linear regression models are used, but they often do not produce good enough results. Afterwards, this paper chooses three non-linear models and finally settled with the polynomial regression with Lasso as it produces the best estimation. Experimental results show that in adoption of energy model presented in this paper, the prediction accuracy can reach more than 95%.

    参考文献
    [1] McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model- based power characterization. In: Proc. of the USENIX Annual Technical Conf. USENIX Association Berkeley, 2011. 12. https://www.usenix.org/legacy/events/atc11/tech/final_files/McCullough.pdf
    [2] Pakbaznia E, Pedram M. Minimizing data center cooling and server power costs. In: Proc. of the 14th ACM/IEEE Int'l Symp. on Low Power Electronics and Design. New York: ACM Press, 2009. 145-150.[doi: 10.1145/1594233.1594268]
    [3] Bash C, Forman G. Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center. In: Proc. of the 14th USENIX Annual Technical Conf. USENIX Association Berkeley, 2007. 138-140. http://dl.acm.org/citation.cfm?id=1364414
    [4] Moreno-Vozmediano R, Montero RS, Llorente IM. Key challenges in cloud computing: Enabling the future Internet of services. Internet Computing, IEEE, 2013,17(4):18-25.[doi: 10.1109/MIC.2012.69]
    [5] Barbulescu M, Grigoriu RO, Neculoiu G, Halcu I, Sandulescu VC, Niculescu-Faida O, Marinescu M, Marinescu V. Energy efficiency in cloud computing and distributed systems. In: Proc. of the 2013 14th RoEduNet Int'l Conf. on Networking in Education and Research. IEEE, 2013. 1-5.[doi: 10.1109/RoEduNet.2013.6714197]
    [6] Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 2007,35(2):13-23.[doi: 10.1145/1250662.1250665]
    [7] Hsu CH, Poole SW. Power signature analysis of the SPECpower_ssj2008 Benchmark. In: Proc. of the 2011 14th IEEE Int'l Symp. on Performance Analysis of Systems and Software (ISPASS). IEEE, 2011. 227-236.[doi: 10.1109/ISPASS.2011.5762739]
    [8] Beloglazov A, Abawajy J, Buyya R. Energy-Aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012,28(5):755-768.[doi: 10.1016/j.future.2011.04.017]
    [9] Economou D, Rivoire S, Kozyrakis C, Ranganathan P. Full-System power analysis and modeling for server environments. In: Proc. of the 14th Int'l Symp. on Computer Architecture. IEEE, 2006. 70-77. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84. 1332
    [10] Lewis AW, Ghosh S, Tzeng NF. Run-Time energy consumption estimation based on workload in server systems. HotPower, 2008, 8:17-21. https://www.usenix.org/legacy/events/hotpower08/tech/full_papers/lewis/lewis_html/
    [11] Kliazovich D, Bouvry P, Khan SU. GreenCloud: A packet-level simulator of energy-aware cloud computing data centers. The Journal of Supercomputing, 2012,62(3):1263-1283.[doi: 10.1007/s11227-010-0504-1]
    [12] Kliazovich D, Bouvry P, Khan SU. DENS: Data center energy-efficient network-aware scheduling. Cluster Computing, 2013,16(1): 65-75.[doi: 10.1007/s10586-011-0177-4]
    [13] Lee YC, Zomaya AY. Energy efficient utilization of resources in cloud computing systems. The Journal of Supercomputing, 2012, 60(2):268-280.[doi: 10.1007/s11227-010-0421-3]
    [14] Song J, Li TT, Yan ZX, Na J, Zhu ZL. Energy-Efficiency model and measuring approach for cloud computing. Ruan Jian Xue Bao/Journal of Software, 2012,23(2):200-214 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4144.htm[doi: 10. 3724/SP.J.1001.2012.04144]
    [15] Contreras G, Martonosi M. Power prediction for Intel XScale? processors using performance monitoring unit events. In: Proc. of the 2005 14th Int'l Symp. on Low Power Electronics and Design (ISLPED 2005). IEEE, 2005. 221-226.[doi: 10.1109/LPE.2005. 195518]
    [16] Singh K, Bhadauria M, McKee SA. Real time power estimation and thread scheduling via performance counters. ACM SIGARCH Computer Architecture News, 2009,37(2):46-55.[doi: 10.1145/1577129.1577137]
    [17] Isci C, Martonosi M. Runtime power monitoring in high-end processors: Methodology and empirical data. In: Proc. of the 36th Annual IEEE/ACM Int'l Symp. on Microarchitecture. IEEE Computer Society, 2003. 93.[doi: 10.1109/MICRO.2003.1253186]
    [18] Li W, Yang H, Luan Z, Qian D. Energy prediction for MapReduce workloads. In: Proc. of the IEEE 2011 9th Int'l Conf. on Dependable, Autonomic and Secure Computing (DASC). IEEE, 2011. 443-448.[doi: 10.1109/DASC.2011.88]
    [19] Lively C, Wu X, Taylor V, Moore S, Chang H, Su C, Cameron K. Power-Aware predictive models of hybrid (MPI/OpenMP) scientific applications on multicore systems. Computer Science-Research and Development, 2012,27(4):245-253.[doi: 10.1007/s00450-011-0190-0]
    [20] Lively C, Wu X, Taylor V, Moore S, Chang H, Su C, Cameron K. Energy and performance characteristics of different parallel implementations of scientific applications on multicore systems. Int'l Journal of High Performance Computing Applications, 2011, 25(3):342-350.[doi: 10.1177/1094342011414749]
    [21] Garg SK, Versteeg S, Buyya R. A framework for ranking of cloud computing services. Future Generation Computer Systems, 2013, 29(4):1012-1023.[doi: 10.1016/j.future.2012.06.006]
    [22] Nathuji R, Schwan K. VirtualPower: Coordinated power management in virtualized enterprise systems. ACM SIGOPS Operating Systems Review, 2007,41(6):265-278.[doi: 10.1145/1294261.1294287]
    [23] Nathuji R, Schwan K, Somani A, Joshi Y. VPM tokens: Virtual machine-aware power budgeting in datacenters. Cluster Computing, 2009,12(2):189-203.[doi: 10.1007/s10586-009-0077-z]
    [24] Buyya R, Beloglazov A, Abawajy J. Energy-Efficient management of data center resources for cloud computing: A vision, architectural elements, and open challenges. arXiv preprint arXiv:1006.0308. 2010.
    [25] Beloglazov A, Buyya R. Energy efficient resource management in virtualized cloud data centers. In: Proc. of the 2010 10th IEEE/ACM Int'l Conf. on Cluster, Cloud and Grid Computing. IEEE Computer Society, 2010. 826-831.[doi: 10.1109/CCGRID. 2010.46]
    [26] Buyya R, Ranjan R, Calheiros RN. Modeling and simulation of scalable cloud computing environments and the CloudSim toolkit: Challenges and opportunities. In: Proc. of the 14th 2009 Int'l Conf. on High Performance Computing & Simulation (HPCS 2009). IEEE, 2009. 1-11.[doi: 10.1109/HPCSIM.2009.5192685]
    [27] Feller E, Morin C, Leprince D. State of the art of power saving in clusters and results from the EDF case study. Institut National de Recherche en Informatique et en Automatique (INRIA), 2010. http://hal.inria.fr/docs/00/54/38/10/PDF/RR-7473.pdf
    [28] Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge: Cambridge University Press, 2000.Du SX, Wu TJ. Support vector machines for regression. Journal of System Simulation, 2003,15(11):1580-1585 (in Chinese with English abstract)[doi: 10.3969/j.issn.1004-731X.2003.11.023]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗亮,吴文峻,张飞.面向云计算数据中心的能耗建模方法.软件学报,2014,25(7):1371-1387

复制
分享
文章指标
  • 点击次数:6909
  • 下载次数: 12873
  • HTML阅读次数: 3363
  • 引用次数: 0
历史
  • 收稿日期:2013-12-30
  • 最后修改日期:2014-05-06
  • 在线发布日期: 2014-07-08
文章二维码
您是第19728008位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号