社会化媒体大数据多阶段整群抽样方法
作者:
基金项目:

教育部中央高校基金(13SZYB01);陕西省社科联重大理论与现实问题研究项目(2013C124);中国电信“社会化媒体大数据云服务商业模式的研究”项目(SN2012-YS-13709)


Sampling Online Social Media Big Data Based Multi Stage Cluster Method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在线社会化媒体大数据是行动者自组织关系的集合,其内部蕴含了多层次的社会实体关系,因此,在线社会化媒体大数据抽样方法的研究对于社会计算这一新兴研究领域具有重要的理论和应用价值.现有抽样方法存在大型马尔可夫链难以并行化、样本局部性陷入、马尔可夫链燃烧预热等问题.针对这些问题,提出了在线社会化媒体大数据整群多阶段抽样方法OSM-MSCS.该方法首先进行整群分解,将总体分解成若干小型凝聚子群;而后,使用动态延迟拒绝方法对凝聚子群内部的关系抽样;最后,使用Gibbs方法完成不同凝聚子群之间相干关系的筛选,从而获得整个样本序列.实验结果表明,OSM-MSCS方法能够有效地对各种结构特征的在线社会化媒体大数据进行抽样,从“个体地位-群体凝聚性-整体结构性”这3个层次进行综合评价,其抽样效果要明显好于MHRW和BFS这两种最主流的抽样方法.

    Abstract:

    The big data from online social media represents the relationship between the actors' self-organization. It contains multi-level social entity relationship. As an emerging field in recent years, online social media sampling method has important research value and practical significance in social computing. However, there are some problems in existing methods. For example, large Markov chain is difficult to parallelize, sampling is easy to be trapped in local, and there is concerns with Markov chain burn-in process. To address those issues, the paper presents a multi stage cluster sampling for online social media big data (OSM-MSCS). The proposed method first decomposes integral cluster into small cohesive subgroups, then uses delay rejection (DR) to sample typical online social relationship with parallel processing, and finally uses Gibbs sampling methods to choose interaction relationship in different cohesive subgroups to obtain the random sequence. Experimental results show that OSM-MSCS is an effective method for online social media big data, and its sampling technique is better than BFS and MHRW.

    参考文献
    [1] Yunus M. Building Social Business: The New Kind of Capitalism That Serves Humanity's Most Pressing Needs. Philadelphia: Public Affairs, 2011. 2-17.
    [2] Leung L. Generational differences in content generation in social media: The roles of the gratifications sought and of narcissism. Computers in Human Behavior, 2013,29(3):997-1006. [doi: 10.1016/j.chb.2012.12.028]
    [3] Becchetti L, Castillo C, Donato D, Fazzone A. A comparison of sampling techniques for Web graph characterization. In: Proc. of the Workshop on Link Analysis (LinkKDD 2006). New York: ACM Press, 2006. http://ailab.ijs.si/dunja/linkkdd2006/Papers/ becchetti.pdf [doi: 10.1.1.69.1736]
    [4] Leskovec J, Faloutsos C. Sampling from large graphs. In: Proc. of the 12th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2006. 631-636. [doi: 10.1145/1150402.1150479]
    [5] Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B. Measurement and analysis of online social networks. In: Proc. of the 7th ACM SIGCOMM Conf. on Internet Measurement. New York: ACM Press, 2007. 29-42. [doi: 10.1145/1298306. 1298311]
    [6] Amanda LT, Peter JM, Mason AP. Social structure of Facebook networks. Physica A, 2012,391:4165-4180. [doi: 10.1016/j.physa. 2011.12.021
    [7] Ferrara E. A large-scale community structure analysis in Facebook. EPJ Data Science, 2012,1(1):1-30. [doi: 10.1140/epjds1]
    [8] Ahmed N, Neville J, Kompella R. Network sampling via edge-based node selection with graph induction. Computer Science Technical Reports, 11-016, 2011. 1-10.
    [9] Gjoka M, Kurant M, Butts CT, Markopoulou A. Practical recommendations on crawling online social networks. IEEE Journal on Selected Areas in Communications, 2011,29(9):1872-1892. [doi: 10.1109/JSAC.2011.111011]
    [10] Goel S, Salganik MJ. Assessing respondent-driven sampling. Proc. of the National Academy of Sciences, 2010,107(15):6743-6747. [doi: 10.1073/pnas.1000261107]
    [11] Rasti AH, Torkjazi M, Rejaie R, Duffield N, Willinger W, Stutzbach D. Evaluating sampling techniques for large dynamic graphs. Technical Report, CIS-TR-08-01, Oregon: Department of Computer and Information Science, University of Oregon, 2008. 1-14.
    [12] Gilks WR, Richardson S, Spiegelhalter DJ. Markov Chain Monte Carlo in Practice. London: Chapman & Hall/CRC, 1996. 67-72.
    [13] Lovász L. Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty, 1993,2(1):1-46.
    [14] Gjoka M, Kurant M, Butts C, Markopoulou A. Walking in Facebook: A case study of unbiased sampling of OSNs. In: Proc. of the 29th Conf. on Information Communications. New York: IEEE Press, 2010. 2498-2506. http://dl.acm.org/citation.cfm?id=1833840 [doi: 10.1109/INFCOM.2010.5462078]
    [15] Wang TY, Chen Y, Zhang ZB, Xu TY, Jin L, Hui P, Deng BX, Li X. Understanding graph sampling algorithms for social network analysis. In: Proc. of the 31st Int'l Conf. on Distributed Computing Systems Workshops (ICDCSW). New York: IEEE Press, 2011. 123-128. [doi: 10.1109/ICDCSW.2011.34]
    [16] Jin L, Chen Y, Hui P, Ding C, Wang TY, Vasilakos AV, Deng BX, Li X. Albatross sampling: Robust and effective hybrid vertex sampling for social graphs. In: Proc. of the 3rd ACM Int'l Workshop on MobiArch. New York: ACM Press, 2011. 11-16. [doi: 10. 1145/2000172.2000178]
    [17] Hubler C, Kriegel HP, Borgwardt K, Ghahramani Z. Metropolis algorithms for representative subgraph sampling. In: Proc. of the 8th IEEE Int'l Conf. on Data Mining (ICDM 2008). New York: IEEE Press, 2008. 283-292. [doi: 10.1109/ICDM.2008.124]
    [18] Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1997,57(1):97-109.
    [19] Leskovec J, Lang KJ, Dasgupta A, Mahoney MW. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 2009,6(1):29-123. [doi: 10.1080/15427951.2009.10129177]
    [20] Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale complexity in networks. Nature, 2010,466(7307):761-764. [doi: 10.1038/nature09182]
    [21] Lancichinetti A, Kivelä M, Saramäki J, Fortunato S. Characterizing the community structure of complex networks. PloS One, 2010,5(8):e11796. [doi: 10.1371/journal.pone.0011796]
    [22] Xie J, Szymanski BK. Towards linear time overlapping community detection in social networks. In: Advances in Knowledge Discovery and Data Mining, Vol.7302. Berlin, Heidelberg: Springer-Verlag, 2012. 25-36. [doi: 10.1007/978-3-642-30220-6_3]
    [23] Gregory S. Finding overlapping communities in networks by label propagation. New Journal of Physics, 2010,12(10):103018.
    [24] Mira A. On Metropolis-Hastings algorithms with delayed rejection. Metron, 2001,59(3-4):231-234. [doi: 10.1088/1367-2630/12/ 10/103018]
    [25] Trias M, Vecchio A, Veitch J. Delayed rejection schemes for efficient Markov-chain Monte-Carlo sampling of multimoda, distributions. arXiv preprint arXiv, 2207,0904:2009.
    [26] Martinez WL. Computational statistics in MATLAB. Wiley Reviews: Computational Statistics, 2011,3(1):69-74.
    [27] Mengersen K, Knight S, Robert CP. MCMC: How do we know when to stop? In: Proc. of the Bulletin of the Int'l Statistical. 1999. 58.
    [28] Roberts G, Rosenthal J. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics, 2009,18(2):349-367.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔颖安,李雪,王志晓,张德运.社会化媒体大数据多阶段整群抽样方法.软件学报,2014,25(4):781-796

复制
分享
文章指标
  • 点击次数:6021
  • 下载次数: 11313
  • HTML阅读次数: 3226
  • 引用次数: 0
历史
  • 收稿日期:2013-09-11
  • 最后修改日期:2014-01-27
  • 在线发布日期: 2014-03-28
文章二维码
您是第19892678位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号