基于节点分割的社交网络属性隐私保护
作者:
基金项目:

国家自然科学基金(61232005,61100237);深圳市战略新兴产业发展专项资金(CXZZ20120831113048965)


Attribute Privacy Preservation in Social Networks Based on Node Anatomy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    现有研究表明,社交网络中用户的社交结构信息和非敏感属性信息均会增加用户隐私属性泄露的风险.针对当前社交网络隐私属性匿名算法中存在的缺乏合理模型、属性分布特征扰动大、忽视社交结构和非敏感属性对敏感属性分布的影响等弱点,提出一种基于节点分割的隐私属性匿名算法.该算法通过分割节点的属性连接和社交连接,提高了节点的匿名性,降低了用户隐私属性泄露的风险.此外,量化了社交结构信息对属性分布的影响,根据属性相关程度进行节点的属性分割,能够很好地保持属性分布特征,保证数据可用性.实验结果表明,该算法能够在保证数据可用性的同时,有效抵抗隐私属性泄露.

    Abstract:

    Recent research shows that social structures or non-sensitive attributes of users can increase risks of user sensitive attribute disclosure in social networks. Most of the existing private attribute anonymization schemes have many defects, such as lack of proper model, too much distortion on attributes distribution, neglect social structure and non-sensitive attributes' influence on sensitive attributes. In this paper, an attribute privacy preservation scheme based on node anatomy is proposed. It allocates original node's attribute links and social links to new nodes to improve original node's anonymity, thus protects user from sensitive attribute disclosure. Meanwhile, it measures social structure influence on attribute distribution, and splits attributes according to attributes' correlations. Experimental results show that the proposed scheme can maintain high data utility and resist private attribute disclosure.

    参考文献
    [1] Anagnostopoulos A, Kumar R, Mahdian M. Influence and correlation in social networks. In: Proc. of the 14th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2008. 7-15. [doi: 10.1145/1401890.1401897]
    [2] Mislove A, Viswanath B, Gummadi KP, Druschel P. You are who you know: Inferring user profiles in online social networks. In: Proc. of the 3rd ACM Int'l Conf. on Web Search and Data Mining. ACM Press, 2010. 251-260. [doi: 10.1145/1718487.1718519]
    [3] Zheleva E, Getoor L. To join or not to join: The illusion of privacy in social networks with mixed public and private user profiles. In: Proc. of the 18th Int'l Conf. on World Wide Web. ACM Press, 2009. 531-540. [doi: 10.1145/1526709.1526781]
    [4] Narayanan A, Shmatikov V. De-Anonymizing social networks. In: Proc. of the 2009 30th IEEE Symp. on Security and Privacy. IEEE, 2009. 173-187. [doi: 10.1109/SP.2009.22]
    [5] Narayanan A, Shmatikov V. Robust de-anonymization of large sparse datasets. In: Proc. of the 2008. IEEE Symp. on Security and Privacy. IEEE, 2008. 111-125. [doi: 10.1109/SP.2008.33]
    [6] Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: Proc. of the 2nd ACM Conf. on Electronic Commerce. ACM Press, 2000. 158-167. [doi: 10.1145/352871.352887]
    [7] Deng AL, Zhu YY, Shi BL. A collaborative filtering recommendation algorithm based on item rating prediction. Ruan Jian Xue Bao/Journal of Software, 2003,14(9):1621-1628 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/14/1621.htm
    [8] Yin Z, Gupta M, Weninger T, Han J. Linkrec: A unified framework for link recommen-dation with user attributes and graph structure. In: Rappa M, ed. Proc. of the 19th Int'l Conf. on World Wide Web. New York: ACM Press, 2010. 1211-1212.
    [9] Gong NZ, Talwalkar A, Mackey L, Huang L, Shin ECR, Stefanov E, Shi E, Song D. Jointly predicting links and inferring attributes using a social-attribute network (san). In: Proc. of the SNA-KDD 2012. 2012. http://arxiv.org/pdf/1112.3265.pdf
    [10] Yang SH, Long B, Smola A, Sadagopan N, Zheng Z, Zha H. Like like alike—Joint friendship and interest propagation in social networks. In: Sadagopan S, Ramamritham K, Kumar A, Ravindra MP, Bertino E, Kumar R, eds. Proc. of the 20th Int'l Conf. on World Wide Web. New York: ACM Press, 2011. 537-546.
    [11] Yuan MX, Chen L, Yu PS, Yu T. Protecting sensitive labels in social network data anonymization. IEEE Trans. on Knowledge and Data Engineering, 2013,25(3):633-647. [doi: 10.1109/TKDE.2011.259]
    [12] Sun X, Sun L, Wang H. Extended k-anonymity models against sensitive attribute disclosure. Computer Communications, 2011, 34(4):526-535. [doi: 10.1016/j.comcom.2010.03.020]
    [13] Zhou B, Pei J. The k-anonymity and l-diversity approaches for privacy preservation in social networks against neighborhood attacks. Knowledge and Information Systems, 2011,28(1):47-77. [doi: 10.1007/s10115-010-0311-2]
    [14] Ford R, Truta TM, Campan A. P-Sensitive k-anonymity for social networks. In: Stahlbock R, Crone SF, Lessmann S, eds. Proc. of the DMIN. Las Vegas: CSREA Press, 2009. 403-409.
    [15] Wasserman S, Faust K. Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press, 1994.
    [16] Fard AM, Wang K, Yu PS. Limiting link disclosure in social network analysis through subgraph-wise perturbation. In: Proc. of the 15th Int'l Conf. on Extending Database Technology. ACM Press, 2012. 109-119. [doi: 10.1145/2247596.2247610]
    [17] Freeman LC. Centrality in social networks: Conceptual clarification. Social Networks, 1979,1(3):215-239.
    [18] Barrat A, Barthelemy M, Pastor-Satorras R, Vespignan A. The architecture of complex weighted networks. Proc. of the National Academy of Sciences of the United States of America, 2004,101(11):3747-3752. [doi: 10.1073/pnas.0400087101]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

付艳艳,张敏,冯登国,陈开渠.基于节点分割的社交网络属性隐私保护.软件学报,2014,25(4):768-780

复制
分享
文章指标
  • 点击次数:6643
  • 下载次数: 8504
  • HTML阅读次数: 2333
  • 引用次数: 0
历史
  • 收稿日期:2013-09-10
  • 最后修改日期:2013-12-18
  • 在线发布日期: 2014-03-28
文章二维码
您是第19728021位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号