一种基于混合高斯模型的多目标进化算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点基础研究发展计划(973)(2011CB707104);国家自然科学基金(61273313,61372147)


Multiobjective Evolutionary Algorithm Based on Mixture Gaussian Models
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前,大多数多目标进化算法采用为单目标优化所设计的重组算子.通过证明或实验分析了几个典型的单目标优化重组算子并不适合某些多目标优化问题.提出了基于分解技术和混合高斯模型的多目标优化算法(multiobjective evolutionary algorithm based on decomposition and mixture Gaussian models,简称MOEA/D-MG).该算法首先采用一个改进的混合高斯模型对群体建模并采样产生新个体,然后利用一个贪婪策略来更新群体.针对具有复杂Pareto前沿的多目标优化问题的测试结果表明,对给定的大多数测试题,该算法具有良好的效果.

    Abstract:

    Recombination operators used in most current multiobjective evolutionary algorithms (MOEAs) were originally designed for single objective optimization. This paper demonstrates that some widely used recombination operators may not work well for multiobjective optimization problems (MOPs), and proposes a multiobjective evolutionary algorithm based on decomposition and mixture Gaussian models (MOEA/D-MG). In the algorithm, a reproduction operator based on mixture Gaussian models is used to model the population distribution and sample new trails solutions, and a greedy replacement scheme is then applied to update the population by the new trial solutions. MOEA/D-MG is applied to a variety of test instances with complicated Pareto fronts. The extensive experimental results indicate that MOEA/D-MG is promising for dealing with these continuous MOPs.

    参考文献
    相似文献
    引证文献
引用本文

周爱民,张青富,张桂戌.一种基于混合高斯模型的多目标进化算法.软件学报,2014,25(5):913-928

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-02-04
  • 最后修改日期:2013-10-31
  • 录用日期:
  • 在线发布日期: 2014-05-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号