专家证据文档识别无向图模型
作者:
基金项目:

国家自然科学基金(61175068);教育部留学回国人员启动基金;云南省教育厅科研基金重大专项;云南省软件工程重点实验室开放基金(2011SE14)


Undirected Graph Model for Expert Evidence Document Recognition
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    专家证据文档识别是专家检索的关键步骤.融合专家候选文档独立页面特征以及页面之间的关联关系,提出了一个专家证据文档识别无向图模型.该方法首先分析各类专家证据文档中的词、URL 链接、专家元数据等独立页面特征以及候选专家证据文档间的链接和内容等关联关系;然后将独立页面特征以及页面之间的关联关系融入到无向图中构建专家证据文档识别无向图模型;最后利用梯度下降方法学习模型中特征的权重,并利用吉布斯采样方法进行专家证据文档识别.通过对比实验验证了该方法的有效性.实验结果表明,该方法有较好的效果.

    Abstract:

    Expert evidence document recognition is the key step for expert search. Combining specialist candidate document independent page features and correlation among pages, this paper proposes an expert evidence document recognition method based on undirected graph model. First, independent page features such as words, URL links and expert metadata in all kinds of expert evidence document, and correlations such as links and content among candidate expert evidence document are analyzed. Then, independent page features and correlation among pages are integrated into the undirected graph to construct an undirected graph model for expert evidence document recognition. Finally, feature weights are learned in the model by using the gradient descent method and expert evidence document recognition is achieved by utilizing Gibbs Sampling method. The effectiveness of the proposed method is verified by comparison experiment. The experimental results show that the proposed method has a better effect.

    参考文献
    [1] Macdonald C, Ounis I. Voting for candidates: Adapting data fusion techniques for an expert search task. In: Proc. of the 15th ACM Int''l Conf. on Information and Knowledge Management. New York: ACM Press, 2006. 387-396.[doi: 10.1145/1183614.1183671]
    [2] Macdonald C, Hannah D, Ounis I. High quality expertise evidence for expert search. Lecture Notes in Computer Science, 2008, 4956:283-295.[doi: 10.1007/978-3-540-78646-7_27]
    [3] Craswell N, de Vries AP, Soboroff I. Overview of the trec-2005 enterprise track. In: Proc. of the TREC 2005 Conf. New York: IEEE Press, 2005. 199-205.
    [4] Xi WS, Fox EA, Tan RP, Shu J. Machine learning approach for homepage finding task. In: Proc. of the 9th Int''l Symp. on String Processing and Information Retrieval. Berlin, Heidelberg: Springer-Verlag, 2002. 145-159.[doi: 10.1007/3-540-45735-6_14]
    [5] Tang J, Zhang D, Yao LM. Social network extraction of academic researchers. In: Proc. of the 17th IEEE Int''l Conf. on Data Mining (ICDM 2007). Washington: IEEE Press, 2007. 292-301.[doi: 10.1109/ICDM.2007.30]
    [6] Bron M, Balog K, de Rijke M. Ranking related entities: Components and analyses. In: Proc. of the 19th ACM Int''l Conf. on Information and Knowledge Management. New York: ACM Press, 2010. 1079-1088.[doi: 10.1145/1871437.1871574]
    [7] Li LN, Yu ZT, Zou JJ, Su L, Xian YT, Mao CL. Research on entity homepage recognition method. Journal of Computational Information System, 2009,5(6):1617-1624.
    [8] Fang Y, Si L, Yu ZT, Xian YT, Xu YB. Entity retrieval with hierarchical relevance model. In: Proc. of the 18th Text REtrieval Conf. (TREC 2009). New York: IEEE Press, 2009.
    [9] Fang Y, Si L, Mathur AP. Discriminative graphical models for faculty homepage discovery. Journal of Information Retrieval, 2010, 13(6):618-635.[doi: 10.1007/s10791-010-9127-7]
    [10] Wu ZJ, Yu ZT, Su L, Liu L, Xian YT. Research on the method of expert homepage recognition based on Markov logic networks. Journal of Computational Information System, 2012,8(3):1089-1096.
    [11] Macdonald C, Ounis I. Voting for candidates: Adapting data fusion techniques for an expert search task. In: Proc. of the CIKM 2006. New York: ACM Press, 2006. 387-396.[doi: 10.1145/1183614.1183671]
    [12] Balog K, Azzopardi L, de Rijke M. Formal models for expert finding in enterprise corpora. In: Proc. of the SIGIR 2006. New York: ACM Press, 2006. 43-50.[doi: 10.1145/1148170.1148181]
    [13] Jordan MI. Graphical models. Statistical Science, 2004,19(1):140-155.[doi: 10.1214/088342304000000026]
    [14] Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. Cambridge: Massachusetts Institute of Technology Press, 2009.[doi: 10.1007/978-3-642-38466-0_28]
    [15] Tian W, Shen T, Yu ZT, Guo JY, Xian YT. A Chinese expert name disambiguation approach based on spectral clustering with the expert page-associated relationships. Lecture Notes in Electrical Engineering, 2013,256:2013. 245-253.
    [16] Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. In: Dietterich TG, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems (NIPS) 14. Cambridge: MIT Press, 2002. 894-856.
    [17] Wang L, Bo LF, Jiao LC. Density-Sensitive semi-supervised spectral clustering. Ruan Jian Xue Bao/Journal of Software, 2007, 18(10):2412-2422 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/18/2412.htm[doi: 10.1360/jos182412]
    [18] Wu ZJ, Yu ZT, Guo JY, Mao CL, Zhang YM. Fusion of long distance dependency features for Chinese named entity recognition based on Markov logic networks. In: Proc. of the Natural Language Processing and Chinese Computing. Natural Language Processing and Chinese Computing Communications in Computer and Information Science, 2012,333:132-142.[doi: 10.1007/978- 3-642-34456-5_13]
    [19] Luenberger DG. Optimization by Vector Space Methods. Hoboken: Wiley-Interscience, 1997.
    [20] Zhang D, Lee WS. Question classification using support vector machines. In: Proc. of the 26th Annual Int''l ACM SIGIR Conf. on Research and Development in Informaion Retrieval. New York: ACM Press, 2003. 26-32.[doi: 10.1145/860435.860443]
    [21] Aizawa A. An information-theoretic perspective of TF-IDF measures. Information Processing & Management, 2003,39(1):45-65.[doi: 10.1016/S0306-4573(02)00021-3]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

毛存礼,余正涛,吴则建,郭剑毅,线岩团.专家证据文档识别无向图模型.软件学报,2013,24(11):2734-2746

复制
分享
文章指标
  • 点击次数:5658
  • 下载次数: 7231
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-05-06
  • 最后修改日期:2013-08-02
  • 在线发布日期: 2013-11-01
文章二维码
您是第19754386位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号