基于时序行为的协同过滤推荐算法
作者:
基金项目:

国家自然科学基金(61073110);国家科技支撑计划(2012BAH17B03)


Recommendations Based on Collaborative Filtering by Exploiting Sequential Behaviors
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    协同过滤直接根据用户的行为记录去预测其可能喜欢的产品,是现今最为成功、应用最广泛的推荐方法.概率矩阵分解算法是一类重要的协同过滤方式.它通过学习低维的近似矩阵进行推荐,能够有效处理海量数据.然而,传统的概率矩阵分解方法往往忽略了用户(产品)之间的结构关系,影响推荐算法的效果.通过衡量用户(产品)之间的关系寻找相似的邻居用户(产品),可以更准确地识别用户的个人兴趣,从而有效提高协同过滤推荐精度.为此,提出一种对用户(产品)间的时序行为建模的方法.基于该方法,可以发现对当前用户(产品)影响最大的邻居集合.进一步地,将该邻居集合成功融合到基于概率矩阵分解的协同过滤推荐算法中.在两个真实数据集上的验证结果表明,所提出的SequentialMF 推荐算法与传统的使用社交网络信息与标签信息的推荐算法相比,能够更有效地预测用户实际评分,提升推荐精度.

    Abstract:

    Collaborative filtering, which makes personalized predictions by learning the historical behaviors of users, is widely used in recommender systems. The key to enhance the performance of collaborative filtering is to precisely learn the interests of the active users by exploiting the relationships among users and items. Though various works have targeted on this goal, few have noticed the sequential correlations among users and items. In this paper, a method is proposed to capture the sequential behaviors of users and items, which can help find the set of neighbors that are most influential to the given users (items). Furthermore, those influential neighbors are successfully applied into the recommendation process based on probabilistic matrix factorization. The extensive experiments on two real-world data sets demonstrate that the proposed SequentialMF algorithm can achieve more accurate rating predictions than the conventional methods using either social relations or tagging information.

    参考文献
    [1] Liu JG, Zhou T, Wang BH. Research progress of personalized recommendation system. Progress in Natural Science, 2009,19(1): 1-15 (in Chinese with English abstract).
    [2] Ma H, Yang HX, Lyu MR, King I. SoRec: Social recommendation using probabilistic matrix factorization. In: Proc. of the ACM Int''l Conf. on Information and Knowledge Management. ACM Press, 2008. 978-991.[doi: 10.1145/1458082.1458205]
    [3] Ma H, King I, Lyu MR. Learning to recommend with social trust ensemble. In: Proc. of the Annual Int''l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 2009. 203-210.[doi: 10.1145/1571941.1571978]
    [4] Guo L, Ma J, Chen ZM, Jiang HR. Learning to recommend with social relation ensemble. In: Proc. of the ACM Int''l Conf. on Information and Knowledge Management. ACM Press, 2012. 2599-2602.[doi: 10.1145/2396761.2398701]
    [5] Jamali M, Ester M. TrustWalker: A random walk model for combining trust-based and item-based recommendation. In: Proc. of the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2009. 397-405.[doi: 10.1145/1557019. 1557067]
    [6] Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proc. of the ACM Conf. on Recommender Systems. ACM Press, 2010. 135-142.[doi: 10.1145/1864708.1864736]
    [7] Zhou TC, Ma H, King I, Lyu MR. UserRec: A user recommendation framework in social tagging systems. In: Proc. of the 24th AAAI Conf. on Artificial Intelligence. AAAI Press, 2010. 1486-1491.
    [8] Wu L, Chen EH, Liu Q, Xu LL, Bao TF, Zhang L. Leveraging tagging for neighborhood-aware probabilistic matrix factorization. In: Proc. of the ACM Int''l Conf. on Information and Knowledge Management. ACM Press, 2012. 1854-1858.[doi: 10.1145/2396761.2398531]
    [9] Liu Q, Chen EH, Xiong H, Ding CHQ, Chen J. Enhancing collaborative filtering by user interests expansion via personalized ranking. IEEE Trans. on Systems, Man and Cybernetics—B, 2012,42(1):218-233.[doi: 10.1109/TSMCB.2011.2163711]
    [10] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(16):734-749.[doi: 10.1109/TKDE.2005.99]
    [11] Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proc. of the 10th Int''l Conf. on World Wide Web. ACM Press, 2001. 285-295.[doi: 10.1145/371920.372071]
    [12] Xu HL, Wu X, Li XD, Yan BP. Comparison study of Internet recommendation system. Ruan Jian Xue Bao/Journal of Software, 2009,20(2):350-362 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3388.htm[doi: 10.3724/SP.J.1001.2009. 03388]
    [13] Ungar LH, Foster DP. Clustering methods for collaborative filtering. In: Proc. of the AAAI Workshop on Recommendation Systems. AAAI Press, 1998. 84-88.
    [14] Getoor L, Sahami M. Using probabilistic relational models for collaborative filtering. In: Proc. of the Workshop Web Usage Analysis and User Profiling. Springer-Verlag, 2000. 83-96.
    [15] Hofmann T. Collaborative filtering via gaussian probabilistic latent semantic analysis. In: Proc. of the Annual Int''l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 2003. 259-266.[doi: 10.1145/860435.860483]
    [16] Chen YH, George EI. A Bayesian model for collaborative filtering. In: Proc. of the Int''l Workshop on Artificial Intelligence and Statistics. 1999.
    [17] Salakhutdinov R, Mnih A. Probabilistic matrix factorization. In: Proc. of the Annual Conf. on Neural Information Processing Systems. Curran Associates Press, 2008. 1257-1264.
    [18] Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: Proc. of the 25th Int''l Conf. on Machine Learning. ACM Press, 2008. 880-887.[doi: 10.1145/1390156.1390267]
    [19] Lawrence ND, Urtasun R. Non-Linear matrix factorization with Gaussian processes. In: Proc. of the 26th Annual Int''l Conf. on Machine Learning. ACM Press, 2009. 601-608.[doi: 10.1145/1553374.1553452]
    [20] Koren Y. Collaborative filtering with temporal dynamics. In: Proc. of the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2009. 89-97.[doi: 10.1145/1557019.1557072]
    [21] Xiong L, Chen X, Huang TK, Schneider J, Carbonell JG. Temporal collaborative filtering with Bayesian probabilistic tensor factorization. In: Proc. of the SIAM Int''l Conf. on Data Mining. SIAM/Omnipress, 2010. 211-222.
    [22] Khoshneshin M, Street WN. Incremental collaborative filtering via evolutionary co-clustering. In: Proc. of the ACM Conf. on Recommender Systems. ACM Press, 2010. 325-328.[doi: 10.1145/1864708.1864778]
    [23] Li B, Zhu XQ, Li RJ, Zhang CQ, Xue XY, Wu XD. Cross-Domain collaborative filtering over time. In: Proc. of the 22nd Int''l Joint Conf. on Artificial Intelligence. IJCAI/AAAI Press, 2011. 2292-2298.[doi: 10.5591/978-1-57735-516-8/IJCAI11-382]
    [24] Ren YL, Zhu TQ, Li G, Zhou WL. Top-N recommendations by learning user preference dynamics. In: Proc. of the Annual Conf. on Neural Information Processing Systems. Springer-Verlag, 2013. 390-401.[doi: 10.1007/978-3-642-37456-2_33]
    [25] Yang XW, Steck H, Guo Y, Liu Y. On top-K recommendation using social networks. In: Proc. of the ACM Conf. on Recommender Systems. ACM Press, 2012. 431-438.[doi: 10.1145/2365952.2365969]
    [26] Yang XW, Steck H, Liu Y. Circle-Based recommendation in online social networks. In: Proc. of the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2012. 312-318.[doi: 10.1145/2339530.2339728]
    [27] Liu Q, Xiang B, Chen EH, Ge Y, Xiong H, Bao TF, Zheng Y. Influential seed items recommendation. In: Proc. of the ACM Conf. on Recommender Systems. ACM Press, 2012. 245-248.[doi: 10.1145/2365952.2366005]
    [28] Spertus E, Sahami M, Buyukkokten O. Evaluating similarity measures: A large-scale study intheorkut social network. In: Proc. of the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2005. 678-684.[doi: 10.1145/1081870. 1081956]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙光福,吴乐,刘淇,朱琛,陈恩红.基于时序行为的协同过滤推荐算法.软件学报,2013,24(11):2721-2733

复制
分享
文章指标
  • 点击次数:10070
  • 下载次数: 11662
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-04-30
  • 最后修改日期:2013-07-17
  • 在线发布日期: 2013-11-01
文章二维码
您是第19728356位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号