逐维改进的布谷鸟搜索算法
作者:
基金项目:

新世纪优秀人才支持计划(NCET-11-0315);NSFC-广东联合基金重点支持项目(U1201258);福建省自然科学基金(2011J05044,2013J01216);山东省自然科学杰出青年基金(2013JQE27038)


Cuckoo Search Algorithm with Dimension by Dimension Improvement
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    布谷鸟搜索(cuckoo search,简称CS)算法是一种新兴的仿生智能算法,对解采用整体更新评价策略.在求解多维函数优化问题时,由于各维之间相互干扰,采用整体更新评价策略将恶化算法的收敛速度和解的质量.为了弥补此缺陷,提出了基于逐维改进的布谷鸟搜索算法.在改进算法的迭代过程中,针对解采用逐维更新评价策略.该策略将各维的更新值与其他维的值组合成新的解,并采用贪婪方式接受能够改善解质量的更新值.实验结果说明,改进策略能够有效地提高CS 算法的收敛速度并改善解的质量.与相关的改进布谷鸟搜索算法以及其他演化算法的比较结果表明,改进算法在求解连续函数优化问题上是具有竞争力的.

    Abstract:

    Cuckoo search (CS) is a new nature-inspired intelligent algorithm which uses the whole update and evaluation strategy on solutions. For solving multi-dimension function optimization problems, this strategy may deteriorate the convergence speed and the quality of solution of algorithm due to interference phenomena among dimensions. To overcome this shortage, a dimension by dimension improvement based cuckoo search algorithm is proposed. In the progress of iteration of improved algorithm, a dimension by dimension based update and evaluation strategy on solutions is used. The proposed strategy combines an updated value of one dimension with values of other dimensions into a new solution, and greedily accepts any updated values that can improve the solution. The simulation experiments show that the proposed strategy can improve the convergence speed and the quality of the solutions effectively. Meanwhile, the results also reveal the proposed algorithm is competitive for continuous function optimization problems compared with other improved cuckoo search algorithms and other evolution algorithms.

    参考文献
    [1] Kennedy J, Eberhart RC. Particle swarm optimization. In: Proc. of the IEEE Int''l Conf. on Neural Networks. Piscataway: IEEE Inc., 1995. 1942-1948.[doi: 10.1109/ICNN.1995.488968]
    [2] Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proc. of the 6th Int''l Symp. on Micro Machine and Human Science. Piscataway: IEEE Inc., 1995. 39-43.[doi: 10.1109/MHS.1995.494215]
    [3] Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents. IEEE Trans. on Systems, Man, and Cybernetics, Part B, 1996,26(1):29-41.[doi: 10.1109/3477.484436]
    [4] Clerc M. Particle Swarm Optimization. Landon: Wiley-ISTE, 2006.
    [5] Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report, TR-06, Computer Engineering Department, Engineering Faculty, Erciyes University, 2005.
    [6] Chen H, Cui DW, Cui YA, Tao YQ, Liang K. Ethnic group evolution algorithm. Ruan Jian Xue Bao/Journal of Software, 2010, 21(5):978-990 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3484.htm[doi: 10.3724/SP.J.1001.2010. 03484]
    [7] Yang XS, Deb S. Cuckoo search via Lévy flights. In: Abraham A, Carvalho A, Herrera F, et al., eds. Proc. of the World Congress on Nature and Biologically Inspired Computing (NaBIC 2009). Piscataway: IEEE Publications, 2009. 210-214.[doi: 10.1109/NABIC.2009.5393690]
    [8] Yang XS, Deb S. Engineering optimisation by cuckoo search. Int''l Journal of Mathematical Modeling and Numerical Optimisation, 2010,1(4):330-343.[doi: 10.1504/IJMMNO.2010.03543]
    [9] Yang XS, Deb S. Multi-Objective cuckoo search for design optimization. Computers & Operations Research, 2013,40(6): 1616-1624.[doi: 10.1016/j.cor.2011.09.026]
    [10] Civicioglu P, Besdok E. A conceptual comparison of the cuckoo search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review, 2013,39(4):315-346.[doi: 10.1007/s10462-011-9276-0]
    [11] Walton S, Hassan O, Morgan K, Brown MR. Modified cuckoo search: A new gradient free optimization algorithm. Chaos, Solitons & Fractals, 2011,44(9):710-718.[doi: 10.1016/j.chaos.2011.06.004]
    [12] Tuba M, Subotic M, Stanarevic N. Modified cuckoo search algorithm for unconstrained optimization problems. In: Leandre R, Demiralp M, Tuba M, et al., eds. Proc. of the European Computing Conf. (ECC 2011). Athens: WSEAS Press, 2011. 263-268.
    [13] Valian E, Mohanna S, Tavakoli S. Improved cuckoo search algorithm for global optimization. Int''l Journal of Communications and Information Technology, 2011,1(1):31-44.
    [14] Layeb A, Boussalia SR. A novel quantum inspired cuckoo search algorithm for bin packing problem. Int''l Journal of Information Technology and Computer Science, 2012,4(5):58-67.[doi: 10.5815/ijitcs.2012.05.08]
    [15] Ghodrati A, Lotfi S. A hybrid CS/PSO algorithm for global optimization. In: Pan JS, Chen SM, Nguyen NT, eds. Proc. of the ACIIDS 2012, Part III. LNAI 7198, Berlin, Heidelberg: Springer-Verlag, 2012. 89-98.[doi: 10.1007/978-3-642-28493-9_11]
    [16] Wang F, He XS, Luo LG, Wang Y. Hybrid optimization algorithm of PSO and cuckoo search. In: Proc. of the 2nd Int''l Conf. on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC). Piscataway: IEEE Inc., 2011. 1172-1175.[doi: 10.1109/AIMSEC.2011.6010750]
    [17] Srivastava PR, Khandelwal R, Khandelwal S, Kumar S, Ranganatha SS. Automated test data generation using cuckoo search and tabu search (CSTS) algorithm. Journal of Intelligent Systems, 2012,21(2):195-224.[doi: 10.1515/jisys-2012-0009]
    [18] Li XT, Yin MH. Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method. Chinese Physics B, 2012,21(5):050507-1-050507-6.[doi: 10.1088/1674-1056/21/5/050507]
    [19] Li XT, Wang JN, Yin MH. Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Computing & Applications. Publised online: 09 February 2013.[doi: 10.1007/s00521-013-1354-6]
    [20] Zhong YW, Liu X, Wang LJ, Wang CY. Particle swarm optimization algorithm with iterative improvement strategy for multidimensional function optimization problems. Int''l Journal of Innovative Computing and Application, 2012,4(3-4):223-232.[doi: 10.1504/IJICA.2012.050051]
    [21] Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 2001,9(2): 159-195.[doi: 10.1162/106365601750190398]
    [22] Deb K, Anand A, Joshi D. A computationally efficient evolutionary algorithm for real-parameter optimization. Evolutionary Computation, 2002,10(4):371-395.[doi: 10.1162/106365602760972767]
    [23] Shang YW, Qiu YH. A note on the extended rosenbrock function. Evolutionary Computation, 2006,14(1):119-126.[doi: 10.1162/106365606776022733]
    [24] Noman N, Iba H. Accelerating differential evolution using an adaptive local search. IEEE Trans. on Evolutionary Computation, 2008,12(1):107-125.[doi: 10.1109/TEVC.2007.895272]
    [25] Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S. Problem definitions and evaluation criteria for the CEC2005 special session on real-parameter optimization. Technical Report, KanGAL Report #2005005, Singapore: Kanpur Genetic Algorithms Laboratory, Nanyang Technological University, 2005.
    [26] Brest J, Greiner S, Boskovic B, Mernik M, Zumer V. Self-Adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. on Evolutionary Computation, 2006,10(6):646-657.[doi: 10.1109/TEVC. 2006.872133]
    [27] Liang JJ, Qin AK, Suganthan PN, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. on Evolutionary Computation, 2006,10(3):281-295.[doi: 10.1109/TEVC.2005.857610]
    [28] Wang Y, Cai ZX, Zhang QF. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. on Evolutionary Computation, 2011,15(1):55-66.[doi: 10.1109/TEVC.2010.2087271]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王李进,尹义龙,钟一文.逐维改进的布谷鸟搜索算法.软件学报,2013,24(11):2687-2698

复制
分享
文章指标
  • 点击次数:7664
  • 下载次数: 12265
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-04-27
  • 最后修改日期:2013-07-17
  • 在线发布日期: 2013-11-01
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号