School of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;School of Computer Science and Technology, Shandong University, Jinan 250101, China 在期刊界中查找 在百度中查找 在本站中查找
Cuckoo search (CS) is a new nature-inspired intelligent algorithm which uses the whole update and evaluation strategy on solutions. For solving multi-dimension function optimization problems, this strategy may deteriorate the convergence speed and the quality of solution of algorithm due to interference phenomena among dimensions. To overcome this shortage, a dimension by dimension improvement based cuckoo search algorithm is proposed. In the progress of iteration of improved algorithm, a dimension by dimension based update and evaluation strategy on solutions is used. The proposed strategy combines an updated value of one dimension with values of other dimensions into a new solution, and greedily accepts any updated values that can improve the solution. The simulation experiments show that the proposed strategy can improve the convergence speed and the quality of the solutions effectively. Meanwhile, the results also reveal the proposed algorithm is competitive for continuous function optimization problems compared with other improved cuckoo search algorithms and other evolution algorithms.
[1] Kennedy J, Eberhart RC. Particle swarm optimization. In: Proc. of the IEEE Int''l Conf. on Neural Networks. Piscataway: IEEE Inc., 1995. 1942-1948.[doi: 10.1109/ICNN.1995.488968]
[2] Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proc. of the 6th Int''l Symp. on Micro Machine and Human Science. Piscataway: IEEE Inc., 1995. 39-43.[doi: 10.1109/MHS.1995.494215]
[3] Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents. IEEE Trans. on Systems, Man, and Cybernetics, Part B, 1996,26(1):29-41.[doi: 10.1109/3477.484436]
[4] Clerc M. Particle Swarm Optimization. Landon: Wiley-ISTE, 2006.
[5] Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report, TR-06, Computer Engineering Department, Engineering Faculty, Erciyes University, 2005.
[6] Chen H, Cui DW, Cui YA, Tao YQ, Liang K. Ethnic group evolution algorithm. Ruan Jian Xue Bao/Journal of Software, 2010, 21(5):978-990 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3484.htm[doi: 10.3724/SP.J.1001.2010. 03484]
[7] Yang XS, Deb S. Cuckoo search via Lévy flights. In: Abraham A, Carvalho A, Herrera F, et al., eds. Proc. of the World Congress on Nature and Biologically Inspired Computing (NaBIC 2009). Piscataway: IEEE Publications, 2009. 210-214.[doi: 10.1109/NABIC.2009.5393690]
[8] Yang XS, Deb S. Engineering optimisation by cuckoo search. Int''l Journal of Mathematical Modeling and Numerical Optimisation, 2010,1(4):330-343.[doi: 10.1504/IJMMNO.2010.03543]
[9] Yang XS, Deb S. Multi-Objective cuckoo search for design optimization. Computers & Operations Research, 2013,40(6): 1616-1624.[doi: 10.1016/j.cor.2011.09.026]
[10] Civicioglu P, Besdok E. A conceptual comparison of the cuckoo search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review, 2013,39(4):315-346.[doi: 10.1007/s10462-011-9276-0]
[11] Walton S, Hassan O, Morgan K, Brown MR. Modified cuckoo search: A new gradient free optimization algorithm. Chaos, Solitons & Fractals, 2011,44(9):710-718.[doi: 10.1016/j.chaos.2011.06.004]
[12] Tuba M, Subotic M, Stanarevic N. Modified cuckoo search algorithm for unconstrained optimization problems. In: Leandre R, Demiralp M, Tuba M, et al., eds. Proc. of the European Computing Conf. (ECC 2011). Athens: WSEAS Press, 2011. 263-268.
[13] Valian E, Mohanna S, Tavakoli S. Improved cuckoo search algorithm for global optimization. Int''l Journal of Communications and Information Technology, 2011,1(1):31-44.
[14] Layeb A, Boussalia SR. A novel quantum inspired cuckoo search algorithm for bin packing problem. Int''l Journal of Information Technology and Computer Science, 2012,4(5):58-67.[doi: 10.5815/ijitcs.2012.05.08]
[15] Ghodrati A, Lotfi S. A hybrid CS/PSO algorithm for global optimization. In: Pan JS, Chen SM, Nguyen NT, eds. Proc. of the ACIIDS 2012, Part III. LNAI 7198, Berlin, Heidelberg: Springer-Verlag, 2012. 89-98.[doi: 10.1007/978-3-642-28493-9_11]
[16] Wang F, He XS, Luo LG, Wang Y. Hybrid optimization algorithm of PSO and cuckoo search. In: Proc. of the 2nd Int''l Conf. on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC). Piscataway: IEEE Inc., 2011. 1172-1175.[doi: 10.1109/AIMSEC.2011.6010750]
[17] Srivastava PR, Khandelwal R, Khandelwal S, Kumar S, Ranganatha SS. Automated test data generation using cuckoo search and tabu search (CSTS) algorithm. Journal of Intelligent Systems, 2012,21(2):195-224.[doi: 10.1515/jisys-2012-0009]
[18] Li XT, Yin MH. Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method. Chinese Physics B, 2012,21(5):050507-1-050507-6.[doi: 10.1088/1674-1056/21/5/050507]
[19] Li XT, Wang JN, Yin MH. Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Computing & Applications. Publised online: 09 February 2013.[doi: 10.1007/s00521-013-1354-6]
[20] Zhong YW, Liu X, Wang LJ, Wang CY. Particle swarm optimization algorithm with iterative improvement strategy for multidimensional function optimization problems. Int''l Journal of Innovative Computing and Application, 2012,4(3-4):223-232.[doi: 10.1504/IJICA.2012.050051]
[21] Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 2001,9(2): 159-195.[doi: 10.1162/106365601750190398]
[22] Deb K, Anand A, Joshi D. A computationally efficient evolutionary algorithm for real-parameter optimization. Evolutionary Computation, 2002,10(4):371-395.[doi: 10.1162/106365602760972767]
[23] Shang YW, Qiu YH. A note on the extended rosenbrock function. Evolutionary Computation, 2006,14(1):119-126.[doi: 10.1162/106365606776022733]
[24] Noman N, Iba H. Accelerating differential evolution using an adaptive local search. IEEE Trans. on Evolutionary Computation, 2008,12(1):107-125.[doi: 10.1109/TEVC.2007.895272]
[25] Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S. Problem definitions and evaluation criteria for the CEC2005 special session on real-parameter optimization. Technical Report, KanGAL Report #2005005, Singapore: Kanpur Genetic Algorithms Laboratory, Nanyang Technological University, 2005.
[26] Brest J, Greiner S, Boskovic B, Mernik M, Zumer V. Self-Adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. on Evolutionary Computation, 2006,10(6):646-657.[doi: 10.1109/TEVC. 2006.872133]
[27] Liang JJ, Qin AK, Suganthan PN, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. on Evolutionary Computation, 2006,10(3):281-295.[doi: 10.1109/TEVC.2005.857610]
[28] Wang Y, Cai ZX, Zhang QF. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. on Evolutionary Computation, 2011,15(1):55-66.[doi: 10.1109/TEVC.2010.2087271]