自适应离散差分进化算法策略的选择
作者:
基金项目:

国家自然科学基金(61202351,61202350);国防基础研究基金(Q072006C002-1);航空科学基金(2010ZC13012);江苏省普通高校研究生科研创新计划(CXLX11_0203);江苏高校优势学科建设工程资助项目;南京信息工程大学科研启动费(2013x034)


Strategy Selecting Problem of Self-Adaptive Discrete Differential Evolution Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    根据自适应离散差分进化(SaDDE)算法的提出过程,对算法策略选择问题进行了重点研究.策略池在SaDDE中起着重要作用,策略池的设计面临着3个问题,即:(1)怎样鉴别某个候选解产生策略(CSGS)是有效的还是无效的;(2)应该选择哪些CSGS组成策略池;(3)策略池的大小应该是多少.为了解决这些问题,提出了基于相对排列顺序的标度法(RPOSM)和基于RPOSM的层次分析法(RPOSM-AHP).主要采用某电子对抗(electronic countermeasure,简称ECM)仿真实验平台上的6个测试实例(T_INS)进行测试实验.首先,设计了144个不同的CSGS,为了获得这些CSGS在求解问题上的性能排序序列,做了144×6个独立的实验;然后,采用RPOSM和RPOSM-AHP计算这144个CSGS的最终优先级向量;接着,设计了16个具有不同策略池大小的算法,然后在同样的6个测试实例上测试这些算法的性能;最后,再一次采用RPOSM和RPOSM-AHP为SaDDE寻找到了合适的策略池大小.与其他类似算法的对比实验结果表明:在有限的评估次数(NFE)内,SaDDE比同类算法性能优越.

    Abstract:

    In line with the proposing process of the self-adaptive discrete differential evolution (SaDDE) algorithm, this research focuses on the strategy selection problem. The strategy pool plays a significant role in the SaDDE algorithm, and there are three issues need to be addressed in designing the strategy pool: (1) how to determine if a candidate solution generating strategy (CSGS) is effective; (2) which CSGSes to choose to constitute the strategy pool; and (3) how to find a suitable size forthe strategy pool. In order to solve these problems, a relative permutation order based scale method (RPOSM) and a RPOSM based analytic hierarchy process (RPOSM-AHP) are proposed in this paper. The experiments are mainly conducted on six test instances (T_INSes) which come from an electronic countermeasure (ECM) simulation experimental platform. 144 different CSGSes are designed, and 144×6 independent experiments are performed to obtain the sort sequences of the CSGSes. The RPOSM and the RPOSM-AHP are adopted to obtain the priority vector of the 144 CSGSes. Sequentially, 16 algorithms with different sizes of strategy pools are constructed and their performance is tested on the six T_INSes. Further, the RPOSM and RPOSM-AHP are employed again to find the suitable pool size for the SaDDE algorithm. Computational comparisons demonstrate that, within fixed number of fitness evaluations (NFE), the SaDDE algorithm can generate better results than its competitors.

    参考文献
    [1] Xue Y, Zhuang Y, Zhang YY, Ni SR, Zhao XJ. Multiple UCAV cooperative jamming air combat decision making based on heuristic self-adaptive discrete differential evolution algorithm. Acta Aeronautica et Astronautica Sinica, 2012,34(2):343-351 (in Chinese with English abstract). [doi: 10.7527/S1000-6893.2013.0039]
    [2] Bi XJ, Xiao J. Classification-Based self-adaptive differential evolution with fast and reliable convergence performance. Soft Computing, 2011,15(8):1581-1599. [doi: 10.1007/s00500-010-0689-5]
    [3] Gong WY, Cai ZH, Ling CX, Li H. Enhanced differential evolution with adaptive strategies for numerical optimization. IEEE Trans. on Systems Man and Cybernetics Part B—Cybernetics, 2011,41(2):397-413. [doi: 10.1109/tsmcb.2010.2056367]
    [4] Xu B, Zhuang Y, Xue Y, Wang Z. Self-Adaptive learning based immune algorithm. Journal of Central South University of Technology, 2012,19(4):1021-1031. [doi: 10.1007/s11771-012-1105-3]
    [5] Wang Y, Li B, Weise T, Wang JY, Yuan B, Tian QJ. Self-Adaptive learning based particle swarm optimization. Information Sciences, 2011,181(20):4515-4538. [doi: 10.1016/j.ins.2010.07.013]
    [6] Wang Y, Zhou JZ, Zhou C, Wang YQ, Qin H, Lu YL. An improved self-adaptive PSO technique for short-term hydrothermal scheduling. Expert Systems with Applications, 2012,39(3):2288-2295. [doi: 10.1016/j.eswa.2011.08.007]
    [7] Qin AK, Huang VL, Suganthan PN. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. on Evolutionary Computation, 2009,13(2):398-417. [doi: 10.1109/Tevc.2008.927706]
    [8] Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans. on Evolutionary Computation, 1997,1(1): 67-82. [doi: 10.1109/4235.585893]
    [9] Saaty TL. How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 1990,48(1):9-26. [doi: 10.1016/0377-2217(90)90057-I]
    [10] Saaty TL. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 1977,15(3):234-281. [doi: 10.1016/0022-2496(77)90033-5]
    [11] Liu CY, Wang DS. AHPCC: A high performance computer system evaluation model based on HPCC and analytic hierarchy process. Ruan Jian Xue Bao/Journal of Software, 2007,18(4):1039-1046 (in Chinese with English abstract). http://www.jos.org.cn/ 1000-9825/18/1039.htm [doi: 10.1360/jos181039]
    [12] Pan QK, Tasgetiren MF, Liang YC. A discrete differential evolution algorithm for the permutation flowshop scheduling problem. Computers & Industrial Engineering, 2008,55(4):795-816. [doi: 10.1016/j.cie.2008.03.003]
    [13] Tasgetiren MF, Pan QK, Suganthan PN, Liang YC. A discrete differential evolution algorithm for the no-wait flowshop scheduling problem with total flowtime criterion. In: Proc. of the IEEE Symp. on Computational Intelligence in Scheduling. Piscataway: IEEE, 2007. 251-258. [doi: 10.1109/scis.2007.367698]
    [14] Tasgetiren MF, Pan QK, Liang YC, Suganthan PN. A discrete differential evolution algorithm for the total earliness and tardiness penalties with a common due date on a single-machine. In: Proc. of the IEEE Symp. on Computational Intelligence in Scheduling. Piscataway: IEEE, 2007. 271-278. [doi: 10.1109/scis.2007.367701]
    [15] Davis L. Applying adaptive algorithms to epistatic domains. In: Proc. of the Int'l Joint Conf. on Artificial Intelligence. Scottish: British Computer Society, 1985. 161-163.
    [16] Singh V, Choudhary S. Genetic algorithm for traveling salesman problem: Using modified partially-mapped crossover operator. In: Proc. of the Int'l Conf. on Multimedia, Signal Processing and Communication Technologies. Piscataway: IEEE, 2009. 20-23. [doi: 10.1109/mspct.2009.5164164]
    [17] Pan QK, Wang L, Gao L, Li WD. An effective hybrid discrete differential evolution algorithm for the flow shop scheduling with intermediate buffers. Information Sciences, 2011,181(3):668-685. [doi: 10.1016/j.ins.2010.10.009]
    [18] Pan QK, Tasgetiren MF, Suganthan PN, Chua TJ. A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Information Sciences, 2011,181(12):2455-2468. [doi: 10.1016/j.ins.2009.12.025]
    [19] Lee ZJ, Su SF, Lee CY. Efficiently solving general weapon-target assignment problem by genetic algorithms with greedy eugenics. IEEE Trans. on Systems Man and Cybernetics Part B—Cybernetics, 2003,33(1):113-121. [doi: 10.1109/tsmcb.2003.808174]
    引证文献
引用本文

薛羽,庄毅,顾晶晶,常相茂,王洲.自适应离散差分进化算法策略的选择.软件学报,2014,25(5):984-996

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-10-28
  • 最后修改日期:2013-06-09
  • 在线发布日期: 2014-05-04
文章二维码
您是第19937774位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号