粗糙逻辑中公式的Borel型概率粗糙真度
作者:
基金项目:

国家自然科学基金(1103133);西安石油大学青年科技创新基金(2012QN011)


Borel Probabilistic Rough Truth Degree of Formulae in Rough Logic
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以一种特殊的粗糙逻辑为研究对象,视全体赋值之集为通常乘积拓扑空间,通过利用赋值集上的Borel概率测度,提出了能融合粗糙逻辑与计量逻辑为一体的公式的Borel型概率粗糙真度理论,给出了公式概率粗糙真度的公理化定义,建立起了相应的概率真度表示定理.公式的概率粗糙真度理论可被看作粗糙逻辑中已有工作的计量化,也可看作计量逻辑学中真度理论的粗糙化.基于这一核心概念,进一步给出了粗糙逻辑中已有概念的程度化表示形式,如公式的粗糙度、精确度、公式之间的粗糙相似度等,并建立起了基于粗糙相似度的3种近似推理模式.该结果实现了粗糙逻辑与计量逻辑的和谐统一,为进一步基于粗糙真值的程度化推理搭建了一个可能的框架.

    Abstract:

    This paper introduces the notion of the Borel probabilistic rough truth degree of a formula in a special kind of rough logic, by employing Borel probability measures on the valuation set endowed with the usual product topology. It facilitates a special form of rough logic with integration to quantitative logic. The axiomatic definition of probabilistic rough truth degree is given and its representation theorem is also presented. The proposed notion of Borel probabilistic rough truth degree can be regarded as the quantitative analysis of rough logic, as well as the advancing research of the existing notion of truth degree from rough set perspective. Based upon the fundamental notion of rough truth degree, some graded versions of the existing notions, including the roughness degree, accuracy degree and the rough similarity degree, are also presented. Subsequently, three different kinds of approximate reasoning models are established. The obtained results achieve a combination of rough logic and quantitative logic and provide a possible framework for rough truth based approximate reasoning.

    参考文献
    [1] Pawlak Z. Rough sets. Int'l Journal of Computer and Information Science, 1982,11(5):341-356. [doi: 10.1007/BF01001956]
    [2] Pawlak Z. Rough Sets—Theoretical Aspects of Reasoning about Data. Boston: Kluwer Academic Publishers, 1991.
    [3] Lin TY, Cercone T. Rough Sets and Data Mining: Analysis for imprecise Data. Boston: Kluwer Academic Publishers, 1997.
    [4] Orlowska E. Incomplete Information-Rough Set Analysis. Heidelberg: Physica-Verlag, 1997.
    [5] Pawlak Z. Rough set approach to knowledge-based decision support. European Journal of Operational Research, 1997,99(1):48-57. [doi: 10.1016/S0377-2217(96)00382-7]
    [6] Pawlak Z. Rough logic. Bulletin of the Polish Academy of Science: Technical Science, 1987,35(5-6):253-258.
    [7] Rauszer CM. Rough logic for multi-agent systems. In: Masuch M, Polos L, eds. Proc. of the Knowledge Representation and Reasoning under Uncertainty. LNAI 808, Berlin, Heldelberg: Springer-Verlag, 1994. 161-181. [doi :10.1007/3-540-58095-6_12]
    [8] Düntsch I. A logic for rough sets. Theoretical Computer Science, 1997,179(1-2):427-436. [doi: 10.1016/S0304-3975(96)00248-4]
    [9] Banerjee M. Rough sets and 3-valued Lukasiewicz logic. Fundamenta Informaticae, 1997,31(3-4):213-220.
    [10] Banerjee M, Chakraborty MK. Rough sets through algebraic logic. Fundamenta Informaticae, 1996,28(3-4):211-221.
    [11] Lin TY, Liu Q. First-Order rough logic I: Approximate reasoning via rough sets. Fundamenta Informaticae, 1996,27(2-3):137-153.
    [12] Dai JH. Logic for rough sets with rough double Stone algebraic semantics. In: Slezak D, Wang G, Szczuka MS, Duntsch I, Yao Y, eds. Proc. of the RSFDGrC. LNCS 3641, Berlin, Heldelberg: Springer-Verlag, 2005. 141-148. [doi :10.1007/11548669_15]
    [13] Zhang XH, Yao Y, Yu H. Rough implication operator based on strong topological rough algebras. Information Sciences, 2010,180 (19):3764-3780. [doi: 10.1016/j.ins.2010.05.017]
    [14] Liu Q. Rough Set and Rough Reasoning. Beijing: Science in China Press, 2001 (in Chinese).
    [15] Zhang WX, Wu WZ, Liang JY, Li DY. Rough Set Theory and Method. Beijing: Science in China Press, 2001 (in Chinese).
    [16] Zhang XH. Fuzzy Logic and Its Algebra Analysis. Beijing: Science in China Press, 2008 (in Chinese).
    [17] Pagliani P, Chakraborty MK. A Geomery of Approximation: Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns. New York: Springer-Verlag, 2008.
    [18] Adam EW. A Primer of Probability Logic. Stanford: CSLI Publications, 1998.
    [19] Wang GJ, Fu L, Song JS. Theory of truth degrees of propositions in two-valued logic. Science China Mathematics, 2002,45(9): 1106-1116.
    [20] Zhou HJ, Wang GJ. Borel probabilistic and quantitative logic. Science China Information Sciences, 2011,54(9):1843-1854.
    [21] She YH, Wang GJ. Topological characterizations of logic theories in 3-valued logic system L3*. Acta Mathematica Sinica, Chinese Series, 2009,52(6):1225-1234 (in Chinese with English abstract).
    [22] Wang GJ, She YH. Topological characterizations of divergency, consistency of logic theories in two-valued propositional logic. Acta Mathematica Sinica, Chinese Series, 2007,50(7):841-850 (in Chinese with English abstract).
    [23] Zhou HJ, Wang GJ. A new theory consistency index based on deduction theorems in several logic systems. Fuzzy Sets and Systems, 2006,157:427-443. [doi: 10.1016/j.fss.2005.07.006]
    [24] Zhou HJ, Wang GJ. Generalized consistency degrees of theories w.r.t. formulas in several standard complete logic systems. Fuzzy Sets and Systems, 2006,157:2058-2073. [doi: 10.1016/j.fss.2006.02.007]
    [25] Wang GJ, Hui XJ. Randomization of classical inference patterns and its application, Science China Information Sciences, 2007, 50 (6):867-877. [doi:10.1007/s11432-007-0067-9]
    [26] Li J, Wang GJ. Theory of truth degrees of propositions in the logic system Ln*. Science China Information Sciences, 2006,49(4): 471-483.
    [27] Wang GJ, Zhou HJ. Quantitative logic. Information Sciences, 2009,179:226-247. [doi: 10.1016/j.ins.2008.09.008]
    [28] Wang GJ, Zhou HJ. Introduction to Mathematical Logic and Resolution Principle. Beijing/Oxford: Science Press and Alpha Science International Limited, 2009. 257-324.
    [29] Miao DQ, Li DG. Rough Set Theory, Algorithm and Application. Beijing: Tsinghua University Press, 2008 (in Chinese).
    [30] Zhang WX, Liang Y, Xu P. Uncertainty Reasoning Based on Inclusion Degree. Beijing: Tsinghua University Press, 2007 (in Chinese).
    [31] Li J, Xu XJ, Shi KQ. Rough similarity degree and rough close degree in rough fuzzy sets and the applications. Journal of Systems Engineering and Electronics, 2008,19(5):945-951. [doi: 10.1016/S1004-4132(08)60180-2]
    [32] Liang JY, Li DY. Uncertainty in information system and knowledge discovery. Beijing: Science in China Press, 2005 (in Chinese).
    [33] Wang GY, Zhang QH. Uncertainty of rough sets in different knowledge granularities. Chinese Journal of Computers, 2008,31(9): 1588-1598 (in Chinese with English abstract).
    [34] Düntsch I, Gediga G. Uncertainty measures of rough set prediction. Artificial Intelligence, 1998,106(1):109-137. [doi: 10.1016/S0 004-3702(98)00091-5]
    [35] Wierman MJ. Measuring uncertainty in rough set theory. Int'l Journal of General Systems, 1999,28(4-5):283-297. [doi: 10.1080/03 081079908935239]
    [36] Halmos PR. Measure Theory. New York: Springer-Verlag, 1974.
    [37] She YH, He XL, Wang GJ. Rough truth degrees of formulae and approximate reasoning in rough logic. Fundamenta Informaticae, 2011,107:67-83.
    [38] Akin E. Measures on Cantor space. Topology Proceedings, 1999,24:1-34.
    [39] Munkres JR. Topology. Beijing: China Machine Press, 2004.
    [40] She YH, He XL. Uncertainty measures for rough formulae in rough logic: An axiomatic approach. Computers and Mathematics with Applications, 2012,63(1):83-93. [doi: 10.1016/j.camwa.2011.10.074]
    相似文献
    引证文献
引用本文

折延宏,贺晓丽.粗糙逻辑中公式的Borel型概率粗糙真度.软件学报,2014,25(5):970-983

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-10-20
  • 最后修改日期:2013-06-09
  • 在线发布日期: 2014-05-04
文章二维码
您是第19791776位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号