动态网络模式挖掘方法及其应用
作者:
基金项目:

国家自然科学基金(60933009, 61072103, 61100157, 61174162)


Methods for Pattern Mining in Dynamic Networks and Applications
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [133]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    静态复杂网络研究在揭示社会网络、信息网络和生物网络的形成和演化机制方面取得了重要成果,其方法和结果对系统生物学产生了重要影响.但现实世界中,很多网络是随时间发生变化的,即动态网络.以动态网络为对象,对动态网络的拓扑特性分析、动态网络相关的各种模式挖掘模型和方法进行了综述、比较和分析.特别地,将动态网络模式分析方法应用于生物网络和社会网络,分析了生物网络相关的动态功能模块和模式演化问题、科学家合作网络和社交网络的动态模式.最后指出了动态网络的模式挖掘方法及其在动态生物网络和社会网络研究中存在的问题和挑战,并对未来的研究方向进行了分析.

    Abstract:

    Studies of static complex networks have brought significant progress in revealing the mechanism for forming and evolving of social networks, information networks, and biological networks. However, many real word networks change with time and this type of networks is the so called dynamic networks. This paper focuses on dynamic networks to study the related pattern mining method and its applications in biological and social networks. First, the study analyzes the topological properties of the dynamic networks. Then we make a comparison and analysis to the algorithms and models for variety of pattern mining in dynamic networks. Specifically, we analyze the dynamics properties of biological and social networks. Based on this property, we study the biological networks related pattern mining problems, such as dynamic function module, pattern evolution and complex diseases associated pattern, the dynamic pattern in social network. Finally, some key problems and challenges in biological and social network are highlighted, as well as the future research directions.

    参考文献
    [1] Fortunato S. Community detection in graphs. Physics Report, 2010,486(3-5):75?174. [doi: 10.1016/j.physrep.2009.11.002]
    [2] Papadopoulos S, Kompatsiaris Y, Vakali A, Spyridonos P. Community detection in social media. Data Mining and Knowledge Discovery, 2012,24(3):515?554. [doi: 10.1007/s10618-011-0224-z]
    [3] Spiliopoulou M. Evolution in social networks: A survey. Social Network Data Analytics, 2011. 149?175. [doi: 10.1007/978-1-4419-8462-3_6]
    [4] Xu KS, Kliger M, Hero AO. Adaptive evolutionary clustering. Eprint arXiv: 1104.1990. 2011.
    [5] Fraser HB. Modularity and evolutionary constraint on proteins. Nature Genetics, 2005,37(4):351?352. [doi: 10.1038/ng1530]
    [6] de Lichtenberg U, Jensen LJ, Brunak S, Bork P. Dynamic complex formation during the yeast cell cycle. Science, 2005,307(5710): 724?727. [doi: 10.1126/science.1105103]
    [7] Wilkins MR, Kummerfeld SK. Sticking together? Falling apart? Exploring the dynamics of the interactome. Trends in Biochemical Sciences, 2008,33(5):195?200. [doi: 10.1016/j.tibs.2008.03.001]
    [8] Chen LL, Blumm N, Christakis NA, Barabási AL, Deisboeck TS. Cancer metastasis networks and the prediction of progression patterns. British Journal of Cancer, 2009,101(5):749?758. [doi: 10.1038/sj.bjc.6605214]
    [9] Hidalgo CA, Blumm N, Barabási AL, Christakis NA. A dynamic network approach for the study of human phenotypes. PLoS Computational Biology, 2009,5(4):e1000353. [doi: 10.1371/journal.pcbi.1000353]
    [10] Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-Based classification of breast cancer metastasis. Molecular Systems Biology, 2007,3(140):1?10. [doi: 10.1038/msb4100180]
    [11] Tang J, Musolesi M, Mascolo C, Latora V. Temporal distance metrics for social network analysis. In: Proc. of the 2nd ACM Workshop on Online Social Networks. 2009. 31?36. [doi: 10.1145/1592665.1592674]
    [12] Tang J, Scellato S, Musolesi M, Mascolo C, Latora V. Small-World behavior in time-varying graphs. Physical Review E, 2010, 81(5):055101. [doi: 10.1103/PhysRevE.81.055101]
    [13] Tang J, Musolesi M, Mascolo C, Latora V, Nicosia V. Analysing information flows and key mediators through temporal centrality metrics. In: Proc. of the 3rd Workshop on Social Network Systems. 2010. 1?6.
    [14] Kim H, Tang J, Anderson R, Mascolo C. Centrality prediction in dynamic human contact networks. Computer Networks, 2012, 56(3):983?996. [doi: 10.1016/j.comnet.2011.10.022]
    [15] Berger-Wolf TY, Saia J. A framework for analysis of dynamic social networks. In: Proc. of the 12th ACM SIGKDD Int''l Conf. on Knowledge Discovery and Data Mining. 2006. 523?528. [doi: 10.1145/1150402.1150462]
    [16] Tantipathananandh C, Berger-Wolf T, Kempe D. A framework for community identification in dynamic social networks. In: Proc. of the 13th ACM SIGKDD Int''l Conf. on Knowledge Discovery and Data Mining. 2007. 717?726. [doi: 10.1145/1281192. 1281269]
    [17] Lahiri M, Berger-Wolf TY. Structure prediction in temporal networks using frequent subgraphs. In: Proc. of the 2007 IEEE Symp. on Computational Intelligence and Data Mining. 2007. 35?42. [doi: 10.1109/CIDM.2007.368850]
    [18] Lahiri M, Berger-Wolf TY. Mining periodic behavior in dynamic social networks. In: Proc. of the 8th IEEE Int''l Conf. on Data Mining. 2008. 373?382. [doi: 10.1109/ICDM.2008.104]
    [19] Lahiri M, Berger-Wolf TY. Periodic subgraph mining in dynamic networks. Knowledge Information System, 2009,24(3):467?497.[doi: 10.1007/s10115-009-0253-8]
    [20] Ning HZ, Xu W, Chi Y, Gong YH, Huang TS. Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recognition, 2010,43(1):113?127. [doi: 10.1016/j.patcog.2009.06.001]
    [21] Chi Y, Song XD, Zhou DY, Hino K, Tseng BL. Evolutionary spectral clustering by incorporating temporal smoothness. In: Proc. of the 13th ACM SIGKDD Int''l Conf. on Knowledge Discovery and Data Mining. 2007. 153?162. [doi: 10.1145/1281192.1281212]
    [22] Lin YR, Chi Y, Zhu SH, Sundaram H, Tseng BL. FacetNet: A framework for analyzing communities and their evolutions in dynamic networks. In: Proc. of the 17th Int''l Conf. on World Wide Web. 2008. 685?694. [doi: 10.1145/1367497.1367590]
    [23] Yang TB, Chi Y, Zhu SH, Gong YH, Jin R. Detecting communities and their evolutions in dynamic social networks-a Bayesian approach. Machine Learning, 2011,82(2):157?189. [doi: 10.1007/s10994-010-5214-7]
    [24] Dreze M, Carvunis AR, Charloteaux B, Galli M, Pevzner SJ, Tasan M. Evidence for network evolution in an arabidopsis interactome map. Science, 2011,333(6042):601?607. [doi: 10.1126/science.1203877]
    [25] Han JDJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJM, Cusick ME, Roth FP, Vidal M. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 2004,430(6995):88?93. [doi: 10.1038/nature02555]
    [26] Alexander RP, Kim PM, Emonet T, Gerstein MB. Understanding modularity in molecular networks requires dynamics. Science Signaling, 2009,2(81):pe44. [doi: 10.1126/scisignal.281pe44]
    [27] Wang XW, Dalkic E, Wu M, Chan C. Gene-Module level analysis: Identification to networks and dynamics. Current Opinion in Biotechnology, 2008,19(5):482?491. [doi: 10.1016/j.copbio.2008.07.011]
    [28] Vespignani A. Evolution thinks modular. Nature Genetics, 2003,35(2):118?119. [doi: 10.1038/ng1003-118]
    [29] del Sol A, Balling R, Hood L, Galas D. Diseases as network perturbations. Current Opinion in Biotechnology, 2010,21(4):566?571.[doi: 10.1016/j.copbio.2010.07.010]
    [30] Erler JT, Linding R. Network-Based drugs and biomarkers. Journal of Pathology, 2010,220(2):290?296. [doi: 10.1002/path.2646]
    [31] Taylor IW, Linding R, Warde-Farley D, Liu YM, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotechnology, 2009,27(2):199?204. [doi: 10.1038/nbt. 1522]
    [32] Palla G, Barabási AL, Vicsek T. Quantifying social group evolution. Nature, 2007,446(7136):664?667. [doi: 10.1038/nature05670]
    [33] White HC. Identity and Control: A Structural Theory of Social Action. Princeton University Press, 1992.
    [34] Jennifer G. The dynamics of Web-based social networks: Membership, relationships, and change. First Monday, 2007,12(11):1?17.
    [35] Amelio A, Pizzuti C. Analyzing voting behavior in italian parliament: Group cohesion and evolution. In: Proc. of the Int''l Conf. on Advances in Social Networks Analysis and Mining. 2012. 140?146. [doi: 10.1109/ASONAM.2012.33]
    [36] Inokuchi A, Washio T. Mining frequent graph sequence patterns induced by vertices. In: Proc. of the SIAM Int''l Conf. on Data Mining. 2010. 466?477.
    [37] Inokuchi A, Ikuta H, Washio T. GTRACE-RS: Efficient graph sequence mining using reverse search. Eprint arXiv: 1110.3879. 2011.
    [38] Xuan BB, Ferreira A, Jarry A. Computing shortest, fastest, and foremost journeys in dynamic networks. Int''l Journal of Foundations of Computer Science, 2003,14(2):267?285. [doi: 10.1142/S0129054103001728]
    [39] Santoro N, Quattrociocchi W, Flocchini P, Casteigts A, Amblard F. Time-Varying graphs and dynamic networks. Technical Report, University of Carleton, 2010.
    [40] Santoro N, Quattrociocchi W, Flocchini P, Casteigts A, Amblard F. Time-Varying graphs and social network analysis: Temporal indicators and metrics. Eprint arXiv: 1102.0629. 2011.
    [41] Borgwardt KM, Kriegel HP, Wackersreuther P. Pattern mining in frequent dynamic subgraphs. In: Proc. of the 6th IEEE Int''l Conf. on Data Mining. 2006. 818?822. [doi: 10.1109/ICDM.2006.124]
    [42] Inokuchi A, Washio T. A fast method to mine frequent subsequences from graph sequence data. In: Proc. of the 8th IEEE Int''l Conf. on Data Mining. 2008. 303?312. [doi: 10.1109/ICDM.2008.106]
    [43] Wackersreuther B, Wackersreuther P, Oswald A, B?hm C, Borgwardt KM. Frequent subgraph discovery in dynamic networks. In: Proc. of the 8th Workshop on Mining and Learning with Graphs. 2010. 155?162. [doi: 10.1145/1830252.1830272]
    [44] Watts DJ, Strogatz SH. Collective dynamics of ‘small-world'' networks. Nature, 1998,393(6684):440?442. [doi: 10.1038/30918]
    [45] Freeman LC. Centrality in social networks: Conceptual clarification. Social Networks, 1979,1(3):215?239. [doi: 10.1016/0378-8733(78)90021-7]
    [46] Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Physical Review E, 2004,69(2):026113. [doi: 10.1103/PhysRevE.69.026113]
    [47] Grindrod P, Parsons MC, Higham DJ, Estrada E. Communicability across evolving networks. Physical Review E, 2011,83(4): 046120. [doi: 10.1103/PhysRevE.83.046120]
    [48] Kim H, Anderson R. Temporal node centrality in complex networks. Physical Review E, 2012,85(2):026107. [doi: 10.1103/ PhysRevE.85.026107]
    [49] Katz L. A new status index derived from sociometric analysis. Psychometrika, 1953,18(1):39?43. [doi: 10.1007/BF02289026]
    [50] Borgatti SP. Centrality and network flow. Social Networks, 2005,27(1):55?71. [doi: 10.1016/j.socnet.2004.11.008]
    [51] Newman MEJ. Networks an Introduction. Oxfrod Univerity Press, 2010.
    [52] Pan RK, Saram?ki J. Path lengths, correlations, and centrality in temporal networks. Physical Review E, 2011,84(1):016105. [doi: 10.1103/PhysRevE.84.016105]
    [53] Kovanen L, Karsai M, Kaski K, Kertész J, Saram?ki J. Temporal motifs in time-dependent networks. Journal of Statistical Mechanics: Theory and Experiment, 2011,11:P11005. [doi: 10.1088/1742-5468/2011/11/P11005]
    [54] Kossinets G, Kleinberg J, Watts D. The structure of information pathways in a social communication network. In: Proc. of the 14th ACM SIGKDD Int''l Conf. on Knowledge Discovery and Data Mining. 2008. 435?443. [doi: 10.1145/1401890.1401945]
    [55] Yang B, Liu DY. Force-Based incremental algorithm for mining community structure in dynamic network. Journal of Computer Science and Technology, 2006,21(3):393?440. [doi: 10.1007/s11390-006-0393-1]
    [56] Sun JM, Papadimitriou S, Yu PS, Faloutsos C. GraphScope: Parameter-free mining of large time-evolving graphs. In: Proc. of the 13th ACM SIGKDD Int''l Conf. on Knowledge Discovery and Data Mining. 2007. 687?696. [doi: 10.1145/1281192.1281266]
    [57] Shan B, Jiang SX, Zhang S, Gao H, Li JZ. IC: Incremental algorithm for community identification in dynamic social networks. Ran Jian Xue Bao/Journal of Software, 2009,20:184?192 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/09022. htm
    [58] Chakrabarti D, Kumarand R, Tomkins A. Evolutionary clustering. In: Proc. of the 12th ACM SIGKDD Int''l Conf. on Knowledge Discovery and Data Mining. 2006. 554?560. [doi: 10.1145/1150402.1150467]
    [59] Tang L, Liu H, Zhang JP. Identifying evolving groups in dynamic multimode networks. IEEE Trans. on Knowledge and Data Engineering, 2012,24(1):72?85. [doi: 10.1109/TKDE.2011.159]
    [60] Kim MS, Han JW. A particle-and-density based evolutionary clustering method for dynamic networks. In: Proc. of the 2009 Int''l Conf. on Very Large Data Bases. 2009. 622?633.
    [61] Xu TB, Zhang ZF, Yu PS, Long B. Evolutionary clustering by hierarchical dirichlet process with hidden Markov state. In: Proc. of the 8th IEEE Int''l Conf. on Data Mining. 2008. 658?667. [doi: 10.1109/ICDM.2008.24]
    [62] Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005,435(7043):814?818. [doi: 10.1038/nature03607]
    [63] Asur S, Parthasarathy S, Ucar D. An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans. on Knowledge Discovery from Data, 2009,3(4):16. [doi: 10.1145/1631162.1631164]
    [64] Greene D, Doyle D, Cunningham P. Tracking the evolution of communities in dynamic social networks. In: Proc. of the Int''l Conf. on Advances in Social Networks Analysis and Mining. 2010. 176?183. [doi: 10.1109/ASONAM.2010.17]
    [65] Fenn DJ, Porter MA, McDonald M, Williams S, Johnson NF, Jones NS. Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007~2008 credit crisis. Eprint arXiv: 0811.3988. 2009.
    [66] Reichardt J, Bornholdt S. Statistical mechanics of community detection. Physical Review E, 2006,74(1):016110. [doi: 10.1103/ PhysRevE.74.016110]
    [67] Wang Y, Wu B, Du N. Community evolution of social network: Feature, algorithm and model. Eprint arXiv: 0804.4356. 2008.
    [68] Lancichinetti A, Fortunato S. Consensus clustering in complex networks. Scientific Reports, 2012,2:336.
    [69] Kuramochi M, Karypis G. Frequent subgraph discovery. In: Proc. of the 1st IEEE Int''l Conf. on Data Mining. 2001. 313?320. [doi: 10.1109/ICDM.2001.989534]
    [70] Yan XF, Han JW. gSpan: Graph-based substructure pattern mining. In: Proc. of the 2nd IEEE Int''l Conf. on Data Mining. 2002. 721?724. [doi: 10.1109/ICDM.2002.1184038]
    [71] Yan XF, Han JW. CloseGraph: Mining closed frequent graph patterns. In: Proc. of the 9th ACM SIGKDD Int''l Conf. on Knowledge Discovery and Data Mining. 2003. 286?295. [doi: 10.1145/956750.956784]
    [72] Nijssen S, Kok JN. A quickstart in frequent structure mining can make a difference. In: Proc. of the 10th ACM SIGKDD Int''l Conf. on Knowledge Discovery and Data Mining. 2004. 647?652. [doi: 10.1145/1014052.1014134]
    [73] Gusfield D. Algorithms on strings, trees and sequences. Computer Science and Computational Biology. Cambridge University Press. 1997.
    [74] Inokuchi A, Washio T, Nishimura K, Motoda H. A fast algorithm for mining frequent connected subgraphs. IBM Research Report, RT0448, 2002.
    [75] You CH, Holder LB, Cook DJ. Graph-Based data mining in dynamic networks: empirical comparison of compression-based and frequency-based subgraph mining. In: Proc. of the 8th IEEE Int''l Conf. on Data Mining. 2008. 929?938. [doi: 10.1109/ICDMW. 2008.68]
    [76] You CH, Holder LB, Cook DJ. Learning patterns in the dynamics of biological networks. In: Proc. of the 15th ACM SIGKDD Int''l Conf. on Knowledge Discovery and Data Mining. 2009. 977?986.
    [77] Apostolico A, Barbares M, Pizzi C. Speedup for a periodic subgraph miner. Information Processing Letters, 2011,111(11):521?523.[doi: 10.1016/j.ipl.2011.02.016]
    [78] Yan LM, Wang JW. Extracting regular behaviors from social media networks. In: Proc. of the 3rd Int''l Conf. on Multimedia Information Networking and Security. 2011. 613?617. [doi: 10.1109/MINES.2011.137]
    [79] Qin GM, Gao L, Yang JY, Li JJ. Evolution pattern discovery in dynamic networks. In: Proc. of the IEEE Int''l Conf. on Signal Processing, Communications and Computing. 2011. 1?6. [doi: 10.1109/ICSPCC.2011.6061813]
    [80] Bogdanov P, Mongiov M, Singh AK. Mining heavy subgraphs in time-evolving networks. In: Proc. of the 11th IEEE Int''l Conf. on Data Mining. 2011. 81?90. [doi: 10.1109/ICDM.2011.101]
    [81] Berlingerio M, Bonchi F, Bringmann B, Gionis A. Mining graph evolution rules. In: Proc. of the European Conf. on Machine Learning and Knowledge Discovery in Databases. 2009. 115?130. [doi: 10.1007/978-3-642-04180-8_25]
    [82] Miyoshi Y, Ozaki T, Ohkawa T. Mining interesting patterns and rules in a time-evolving graph. Lecture Notes in Engineering and Computer Science, 2011,2188(1):448?453.
    [83] Liben-Nowell D, Kleinberg J. The link prediction problem for social networks. In: Proc. of the 12th Annual ACM Int''l Conf. on Information and Knowledge Management. 2003. 556?559. [doi: 10.1145/956863.956972]
    [84] Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 2007,58(7):1019?1031. [doi: 10.1002/asi.20591]
    [85] Lü LY, Zhou T. Link prediction in complex networks: A survey. Physica A, 2011,390(6):1150?1170. [doi: 10.1016/j.physa.2010. 11.027]
    [86] Hasan MA, Zaki MJ. A survey of link prediction in social networks. Social Network Data Analytics, 2011. 243?275. [doi: 10.1007/978-1-4419-8462-3_9]
    [87] Zhou T, Lü LY, Zhang YC. Predicting missing links via local information. The European Physical Journal B—Condensed Matter and Complex Systems, 2009,71(4):623?630. [doi: 10.1140/epjb/e2009-00335-8]
    [88] Lü LY, Jin CH, Zhou T. Similarity index based on local paths for link prediction of complex networks. Physical Review E, 2009, 80(4):046122. [doi: 10.1103/PhysRevE.80.046122]
    [89] Liu WP, Lü LY. Link prediction based on local random walk. Europhysics Letters, 2010,89(5):58007. [doi: 10.1209/0295-5075/89/ 58007]
    [90] Clauset A, Moore C, Newman MEJ. Hierarchical structure and the prediction of missing links in networks. Nature, 2008,453(7191): 98?101. [doi: 10.1038/nature06830]
    [91] Guimerà R, Sales-Pardo M. Missing and spurious interactions and the reconstruction of complex networks. Proc. of the National Academy of Science (PNAS), 2009,106(52):22073?22078. [doi: 10.1073/pnas.0908366106]
    [92] Yu K, Chu W, Yu SP, Tresp V, Xu Z. Stochastic relational models for discriminative link prediction. In: Proc. of Neural Information Precessing Systems. Cambridge: MIT Press, 2006. 1553?1560.
    [93] Taskar B, Wong MF, Abbeel P, Koller D. Link prediction in relational data. In: Proc. of the Neural Information Precessing Systems. Cambridge: MIT Press, 2004. 659?666.
    [94] Kashima H, Abe N. A parameterized probabilistic model of network evolution for supervised link prediction. In: Proc. of the 6th IEEE Int''l Conf. on Data Mining. 2006. 340?349. [doi: 10.1109/ICDM.2006.8]
    [95] Wang C, Satuluri V, Parthasarathy S. Local probabilistic models for link prediction. In: Proc. of the 7th IEEE Int''l Conf. on Data Mining. 2007. 322?331. [doi: 10.1109/ICDM.2007.108]
    [96] Sarkar P, Moore AW. Dynamic social network analysis using latent space models. ACM Special Interest Group on Knowledge Discovery and Data Mining, 2005,7(2):23?30. [doi: 10.1145/1117454.1117459]
    [97] Hoff PD, Raftery AE, Handcock MS. Latent space approaches to social network analysis. Journal of the American Statistical Association, 2002,97(460):1090?1098. [doi: 10.1198/016214502388618906]
    [98] Huang Z, Lin DKJ. The time-series link prediction problem with applications in communication surveillance. Informs Journal on Computing, 2009,21(2):286?303. [doi: 10.1287/ijoc.1080.0292]
    [99] Box GEP, Jenkins GM, Reinsel GC. Time series analysis, forecasting and control. Holden-Day, 1970.
    [100] Dunlavy DM, Kolda TG, Acar E. Temporal link prediction using matrix and tensor factorizations. ACM Trans. on Knowledge Discovery from Data, 2011,5(2):10. [doi: 10.1145/1921632.1921636]
    [101] Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika, 1970,35(3):283?319. [doi: 10.1007/BF02310791]
    [102] Hayashi K, Hirayama J, Ishii S. Dynamic exponential family matrix factorization. In: Proc. of the 13th Pacific-Asia Conf. on Advances in Knowledge Discovery and Data Mining. 2009. 452?462. [doi: 10.1007/978-3-642-01307-2_41]
    [103] Raymond R, Kashima H. Fast and scalable algorithms for semi-supervised link prediction on static and dynamic graphs. In: Proc. of the European Conf. on Machine Learning and Knowledge Discovery in Databases. 2010. 131?147. [doi: 10.1007/978-3-642-15939-8_9]
    [104] Oyama S, Hayashi K, Kashima H. Cross-Temporal link prediction. In: Proc. of the 11th IEEE Int''l Conf. on Data Mining. 2011. 1188?1193. [doi: 10.1109/ICDM.2011.45]
    [105] Tylenda T, Angelova R, Bedathur S. Towards time-aware link prediction in evolving social networks. In: Proc. of the 3rd Workshop on Social Network Mining and Analysis. 2009. 1?10. [doi: 10.1145/1731011.1731020]
    [106] Kitano H. Computational systems biology. Nature, 2002,420(6912):206?210. [doi: 10.1038/nature01254]
    [107] Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 2001,292(5518):929?934. [doi: 10. 1126/science.292.5518.929]
    [108] Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL. Hierarchical organization of modularity in metabolic networks. Science, 2002,297(5586):1551?1555. [doi: 10.1126/science.1073374]
    [109] Rives AW, Galitski T. Modular organization of cellular networks. In: Proc. of the National Academy of Science of the United States of America, 2003,100(3):1128?1133. [doi: 10.1073/pnas.0237338100]
    [110] Barabási AL, Oltvai ZN. Network biology: Understanding the cell''s functional organization. Nature Reviews Genetics, 2004,5(2): 101?113. [doi: 10.1038/nrg1272]
    [111] Prill RJ, Iglesias PA, Levchenko A. Dynamic properties of network motifs contribute to biological network organization. PLoS Biology, 2005,3(11):e343. [doi: 10.1371/journal.pbio.0030343]
    [112] Qi Y, Ge H. Modularity and dynamics of cellular networks. PLoS Computational Biology, 2006,2(12):e174. [doi: 10.1371/journal. pcbi.0020174]
    [113] Przytycka TM, Singh M, Slonim DK. Toward the dynamic interactome: It''s about time. Brief Bioinformatics, 2010,11(1):15?29.[doi: 10.1093/bib/bbp057]
    [114] Komurov K, White M. Revealing static and dynamic modular architecture of the eukaryotic protein interaction network. Molecular Systems Biology, 2007,3(100):1?11.
    [115] Park YJ, Moore C, Bader JS. Dynamic networks from hierarchical Bayesian graph clustering. PLoS ONE, 2010,5(1):e8118. [doi: 10.1371/journal.pone.0008118]
    [116] Gill R, Datta S, Datta S. A statistical framework for differential network analysis from microarray data. BMC Bioinformatics, 2010, 11(95):1?10. [doi: 10.1186/1471-2105-11-95]
    [117] Ay F, Dinh TN, Thai MT, Kahveci T. Finding dynamic modules of biological regulatory networks. In: Proc. of the 2010 IEEE Int''l Conf. on Bioinformatics and Bioengineering. 2010. 136?143. [doi: 10.1109/BIBE.2010.31]
    [118] Kovács IA, Palotai R, Szalay MS, Csermely P. Community landscapes: An integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics. PLoS ONE, 2010,5(9):e12528. [doi: 10.1371/journal.pone. 0012528]
    [119] Tomlins SA, Mehra R, Rhodes DR, Cao XH, Wang L, Dhanasekaran SM, Kalyana-Sundaram S, Wei JT, Rubin MA, Pienta KJ, Shah RB, Chinnaiyan AM. Integrative molecular concept modeling of prostate cancer progression. Nature Genetics, 2006,39(1): 41?51. [doi: 10.1038/ng1935]
    [120] Edelman EJ, Guinney J, Chi JT, Febbo PG, Mukherjee S. Modeling cancer progression via pathway dependencies. PLoS Computational Biology, 2008,4(2):e28. [doi: 10.1371/journal.pcbi.0040028]
    [121] Xiong H, Choe Y. Dynamical pathway analysis. BMC Systems Biology, 2008,2(9):1?17. [doi: 10.1186/1752-0509-2-9]
    [122] Lin CC, Hsiang JT, Wu CY, Oyang YJ, Juan HF, Huang HC. Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy. BMC Systems Biology, 2010,4(138):1?14.
    [123] Tyson JJ, Baumann WT, Chen C, Verdugo A, Tavassoly I, Wang Y, Weiner LM, Clarke R. Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nature Reviews Cancer, 2011,11(7):523?532. [doi: 10.1038/nrc3081]
    [124] Abeel T, Helleputte T, Peer YVd, Dupont P, Saeys Y. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics, 2010,26(3):392?398. [doi: 10.1093/bioinformatics/btp630]
    [125] Barabási AL, Jeong H, Néda Z, Ravasz E, Schubert A, Vicsek T. Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 2002,311(3):590?614. [doi: 10.1016/S0378-4371(02)00736-7]
    [126] Gupta M, Aggarwal C, Han JW, Sun YZ. Evolutionary clustering and analysis of heterogeneous information networks. IBM Research Report, RC25012(W1006-064), 2010.
    [127] Rosvall M, Bergstrom CT. Mapping change in large networks. PLoS ONE, 2010,5(1):e8694. [doi: 10.1371/journal.pone.0008694]
    [128] Scott CT, McCormick JB, DeRouen MC, Owen-Smith J. Democracy derived? New trajectories in pluripotent stem cell research. Cell, 2011,145:820?826. [doi: 10.1016/j.cell.2011.05.032]
    [129] Lang J, Wu SF. Social network user lifetime. In: Proc. of the 2011 IEEE/ACM Int''l Conf. on Social Networks Analysis and Mining. 2011. 289?296. [doi: 10.1109/ASONAM.2011.28]
    [130] http://themetricsystem.rjmetrics.com/2010/01/26/new-data-on-twitters-users-and-engagement/
    [131] Wilson C, Boe B, Sala A, Puttaswamy KP,Zhao BY. User interactions in social networks and their implications. In: Proc. of the 4th ACM European Conf. on Computer Systems. 2009. 205?218. [doi: 10.1145/1519065.1519089]
    [132] Viswanath B, Mislove A, Cha M, andGummadi KP. On the evolution of user interaction in Facebook. In: Proc. of the 2nd ACM Workshop on Online Social Networks. 2009. 37?42. [doi: 10.1145/1592665.1592675]
    [133] Boutet A, Kim H, Yoneki E. What''s in Twitter: I know what parties are popular and who you are supporting now! In: Proc. of the 2012 IEEE/ACM Int''l Conf. on Advances in Social Networks Analysis and Mining. 2012. 132?139. [doi: 10.1007/s13278-013-0120-1]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高琳,杨建业,覃桂敏.动态网络模式挖掘方法及其应用.软件学报,2013,24(9):2042-2061

复制
分享
文章指标
  • 点击次数:8686
  • 下载次数: 12617
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2012-06-26
  • 最后修改日期:2013-03-29
  • 在线发布日期: 2013-07-25
文章二维码
您是第19892678位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号