一种基于标杆管理的优化算法
作者:

Optimization Algorithm Based on Benchmarking
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    借鉴标杆管理理念,提出了一种基于标杆管理的优化算法(benchmarking-based optimization algorithm,简称BOA).根据标杆管理的核心价值观,设计了一套基于动态小生境的竞争性学习机制,针对常用的编码方案,设计出了具体可行的执行方法.种群内个体执行方向明确的主动学习式搜索,通过对标杆的模仿学习,能够快速搜索到解空间内的目标区域内,具有较好的智能性.此外,整个小生境种群系统通过自组织学习实现与环境的友好交互,较好地解决了保持种群的多样性的难题.分析了BOA算法与遗传算法等现代智能优化方法在搜索模式上的重要区别,并通过对比仿真实验,表明算法能够与环境进行稳定而友好的交互,表现出较强的鲁棒性,其搜索速度和寻优能力在实验中均有较好的表现.

    Abstract:

    Drawing on the benchmarking theory in the business management, a new search method, benchmarking-based optimization algorithm (BOA), is proposed in this paper. BOA provides a competitive learning mechanism based on dynamic niche according to the core values of benchmarking. Through imitation and learning, all the individuals within a population are able to approach to the high yielding regions in the solution space and seek out the optimal solutions quickly. Further, the formidable problem of maintaining the diversity of population is effectively resolved through the self-organizing learning process of the niche system and its friendly interaction with the environment. In this paper, the main differences between BLA and the existing intelligent optimization methods, sush as genetic algorithm (GA), are analyzed. The comparative experiments show that BLA is robust and able to perform friendly interactive learning with the environment, and its search speed and optimization ability is far superior to the existing intelligent optimization methods.

    参考文献
    [1] Creutz M. Microcanonical Monte Carlo simulation. Physical Review Letters, 1983,50(19):1411-1414. [doi: 10.1103/PhysRevLett. 50.1411]
    [2] Moscato P. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Technical Report, Report 826, Pasadena: Callifornia Institute of Technology, 1989.
    [3] De Castro LN, Nunes L, Von Zuben FJ. Artificial immune systems: Part I-Basic theory and applications. Technical Report, 210, Universidade Estadual de Campinas, 1999.
    [4] de Castro LN, Von Zuben FJ. The clonal selection algorithm with engineering applications. In: Proc. of the GECCO 2000. 2000. 36-39.
    [5] Eusuff MM, Lansey KE, Pasha F. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Engineering Optimization, 2006,38(2):129-154.
    [6] Murase H. Finite element inverse analysis using a photosynthetic algorithm. Computers and Electronics in Agriculture, 2000,29(1): 115-123.
    [7] Zelinka I. SOMA—Self-Organizing migrating algorithm. In: New Optimization Techniques in Engineering. Berlin, Heidelberg: Springer-Verlag, 2004. 167-217.
    [8] Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: Harmony search. Simulation, 2001,76(2):60-68. [doi: 10.1177/003754970107600201]
    [9] Passino KM. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine, 2002,22(3): 52-67. [doi: 10.1109/MCS.2002.1004010]
    [10] Nakrani S, Tovey C. On honey bees and dynamic server allocation in Internet hosting centers. Adaptive Behavior-Animals, Animats, Software Agent, Robots, Adaptive Systems, 2004,12(3-4):223-240. [doi: 10.1177/105971230401200308]
    [11] Karaboga D, Basturk B. On the performance of artifical bee colony algorithm. Applied Soft Computing, 2008,8(1):687-697. [doi: 10.1016/j.asoc.2007.05.007]
    [12] Yang XS. New enzyme algorithm, tikhonovregulation and inverse parabolic analysis. In: Simons T, Maroulis G, eds. Advances in Computational Methods in Science and Engineering, Lecture Series on Computer and Computer Sciences (ICCMSE 2005). 2005. 1880-1883.
    [13] Krishnanand KN, Ghose D. Detection of multiple source locations using a glowworm metaphor with application to collective robotics. In: Proc. of the 2005 IEEE Swarm Intelligence Symp. (SIS 2005). IEEE, 2005. 84-91. [doi: 10.1109/SIS.2005.1501606]
    [14] Mucherino A, Seref O. Monkey search: A novel meta-heuristic search for global optimization. In: Proc. of the AIP Conf. on Data Mining, System Analysis and Optimization in Biomedicine, Vol.953. American Institute of Physics, 2007. 162-173. [doi: 10.1063/ 1.2817338]
    [15] Havens TC, Spain CJ, Salmon NG, Keller JM. Roach infestation optimization. In: Proc. of the Swarm Intelligence Symp. (SIS 2008). IEEE, 2008. 1-7. [doi: 10.1109/SIS.2008.4668317]
    [16] Yang XS. Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2010.
    [17] Simon D. Biogeography-Based optimization. IEEE Trans. on Evolutionary Computation, 2008,6(12):702-713. [doi: 10.1109/TEV C.2008.919004]
    [18] Tero A, Takagi S, Saigusa T, Ito K, Bebber DP, Fricker MD, et al. Rules for biologically inspired adaptive network design. Science, 2010,327(5964):439-442. [doi: 10. 1126/science.1177894]
    [19] Xie XF, Zhang WJ, Yang ZL. Social cognitive optimization for nonlinear programming problems. In: Proc. of the 1st Int'l Conf. on Machine Learning and Cybernetics, Vol.2. Beijing, 2002. 779-783.
    [20] Li XL. A new intelligent optimization method-artificial fish school algorithm [Ph.D. Thesis]. Hangzhou: Zhejiang University, 2003 (in Chinese). Hangzhou: Zhejiang University, 2003 (in Chinese).
    [21] Zhou YH, Mao ZY. A new search algorithm for global optimization: Population migration algorithm (I). Journal of South China University of Technology (Natural Science), 2003,31(3):1-5 (in Chinese with English abstract).
    [22] Li T, Wang CF, Wang WB, Su WL. A global optimization bionics algorithm for solving integer programming—Plant growth simulation algorithm. Systems Engineering-Theory & Practice, 2005,1(1):76-85 (in Chinese with English abstract).
    [23] Zhang Y. Research on optimization searching method of optical principle [Ph.D. Thesis]. Harbin: Harbin Engineering University, 2009 (in Chinese with English abstract).
    [24] Ma HP, Chen ZD, Pan ZX. Evolutionary algorithm based on species migration optimization. Control and Decision, 2009,24(1): 1620-1624 (in Chinese with English abstract).
    [25] Xie LP, Zeng JC. Physicomimetics method for global optimization. Journal of Computer Research and Development, 2011,48(5): 848-854 (in Chinese with English abstract).
    [26] Cao J, Hou XQ. Explosion search algorithm with neighborhood search mechanism. Computer Engineering, 2011,37(18):183-187 (in Chinese with English abstract).
    [27] Tan SH, Yu WY. New algorithm for global optimization: Cell membrane optimization. Application Research of Computers, 2011, 28(12):454-457 (in Chinese with English abstract).
    [28] Pan WT. A new evolutionary computation approach: Fruit fly optimization algorithm. In: Proc. of the 2011 Conf. of Digital Technology and Innovation Management. 2011. http://www.oitecshop.byethost16.com/FOA.html
    [29] Pan WT. A new fruit fly optimization algorithm: Taking the financial distress model as an example. In: Proc. of the Knowledge- Based Systems, Vol.26. 2012. 69-74. [doi: 10.1016/j.knosys.2011.07.001]
    [30] Yang S. Non-Stationary problem optimization using the primal-dual genetic algorithm. In: Proc. of the 2003 Congress on Evolutionary Computation (CEC 2003), Vol.3. IEEE, 2003. 2246-2253.
    [31] Chi YH, Sun FC, Wang WJ, Yu CM. An improved particle swarm optimization algorithm with search space zoomed factor and attractor. Chinese Journal of Computers, 2011,34(1):115-130 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2011.001 15]
    [32] Srinivasa KG, Venugopal KR, Patnaik LM. A self-adaptive migration model genetic algorithm for data mining applications. Information Sciences, 2007,177(20):4295-4313. [doi: 10.1016/j.ins.2007.05.008]
    [33] Kennedy J, Eberhart RC. A discrete binary of the particle awarm optimization. In: Proc. of the IEEE Int'l Conf. on Systems, Man and Cybernetic. Piscataway: IEEE Service Center, 1997. 4104-4209.
    [34] Huang ZY, Gao Y. Boolean particle swarm optimization algorithm with disturbance factor. Computer Engineering and Design, 2011,32(11):3848-3852 (in Chinese with English abstract).
    [35] Sabine H, Rolf W. Theoretical analysis of initial particle swarm behavior. In: Proc. of the 10th Int'l Conf. on Parallel Problem Solving from Nature-PPSN X. Berlin, Heidelberg: Springer-Verlag, 2008. 889-898. [doi: 10.1007/978-3-540-87700-4_88]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢安世,于永达,黄思明.一种基于标杆管理的优化算法.软件学报,2014,25(5):953-969

复制
分享
文章指标
  • 点击次数:2957
  • 下载次数: 7396
  • HTML阅读次数: 1395
  • 引用次数: 0
历史
  • 收稿日期:2012-05-29
  • 最后修改日期:2013-05-07
  • 在线发布日期: 2014-05-04
文章二维码
您是第19937774位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号