数据库物理结构优化技术
作者:
基金项目:

国家自然科学基金(61170061); 国家重点基础研究发展计划(973)(2011CB302302)


Database Physical Structure Optimization Technology
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    面对快速增长的数据量和复杂的查询请求,关系数据库要满足用户检索的高效性,不能仅仅依靠SQL 查询优化,必须针对不同的应用背景,对数据库的物理结构进行优化,从底层提高数据库的检索查询效率.描述了4 种已被商业数据库优化的物理结构,总结了物理结构优化领域的关键技术,并介绍了商业数据库中使用的数据库物理结构优化推荐工具,最后展望了未来的研究方向.

    Abstract:

    In face of the growing data volume and search requests, to meet the efficiency of users’ search requests, the database cannot depend just on the SQL query optimization. Improvement must be made upon the physical structures of databases and the search efficiency from the origin. The paper describes four physical structures optimized by commercial databases, summarizes several key technologies in physical structure optimization sphere and introduces several recommendation tools for physical structure optimization now utilized in commercial database. The research directions are presented at last.

    参考文献
    [1] Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AU. Big data: The next frontier for innovation, competition,and productivity. Technical Report, McKinsey Global Institute, 2011. 1-15. http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
    [2] Bruno N, Chaudhuri S. Automatic physical database tuning: A relaxation-based approach. In: zcan F, ed. Proc. of the SpecialInterest Group on Management of Data (SIGMOD 2005). Baltimore: ACM Press, 2005. 227-238. [doi: 10.1145/1066157.1066184]
    [3] Gebaly KE, Aboulnaga A. Robustness in automatic physical database design. In: Kemper A, Valduriez P, Mouaddib N, Teubner J,Bouzeghoub M, Markl V, Amsaleg L, Manolescu I, eds. Proc. of the Extending Database Technology (EDBT 2008). Nantes: ACMPress, 2008. 145-156. [doi: 10.1145/1353343.1353365]
    [4] Borovica R, Alagiannis I, Ailamaki A. Automated physical designers: What you see is (not) what you get. In: Lo E, Waas F, eds.Proc. of the 5th Int’l Workshop on Testing Database Systems (DBTest 2012). Scottsdale: ACM Press, 2012. 1-6. [doi: 10.1145/2304510.2304522]
    [5] Zilio DC, Lightstone S, Lohman GM. Trends in automating physical database design. In: Proc. of the IEEE Int’l Conf. 2003. India:IEEE Press, 2003. 441-445. [doi: 10.1109/INDIN.2003.1300376]
    [6] Rozen S, Shasha D. A framework for automating physical database design. In: Lohman GM, Sernadas A, Camps R, eds. Proc. ofthe Very Large Data Bases (VLDB’91). Barcelona: Morgan Kaufmann Publishers, 1991. 401-411.
    [7] Zilio DC. Physical database design decision algorithms and concurrent reorganization for parallel database systems [Ph.D. Thesis].Toronto: University of Toronto, 1998.
    [8] Rao J, Zhang C, Lohman G, Megiddo N. Automating physical database design in a parallel database. In: Franklin MJ, Moon B,Ailamaki A, eds. Proc. of the Special Interest Group on Management of Data (SIGMOD 2002). Madison: ACM Press, 2002.558-569. [doi: 10.1145/564691.564757]
    [9] Aslett M. How Will the Database Incumbents Respond to NoSQL and NewSQL? San Francisco, The 451 Group, 2011. 1-5.
    [10] Stonebraker M, Cattell R. 10 rules for scalable performance in ‘simple operation’ datastores. Communications of the ACM, 2011,54(6):72-80. [doi: 10.1145/1953122.1953144]
    [11] Caprara A, Fischetti M, Maio D. Exact and approximate algorithms for the index selection problem in physical database design.IEEE Trans. on Knowledge and Data Engineering, 1995,7(6):955-967. [doi: 10.1109/69.476501]
    [12] Caprara A, Salazar Gonzalez SJJ. A branch-and-cut algorithm for a generalization of the uncapacitated facility location problem.TOP, 1996,4(1):135-163. [doi: 10.1007/BF02568608]
    [13] Kratica J, Ljubic I, Tosic D. A genetic algorithm for the index selection problem. In: Raidl GR, Meyer JA, Middendorf M, CagnoniS, Cardalda JJR, Corne D, Gottlieb J, Guillot A, Hart E, Johnson CG, Marchiori E, eds. Proc. of the Applications of EvolutionaryComputing, EvoWorkshops 2003. Berlin, Heidelberg: Springer-Verlag, 2003. 280-290. [doi: 10.1007/3-540-36605-9_26]
    [14] Dash D, Polyzotis N, Ailamaki A. CoPhy: A scalable, portable, and interactive index advisor for large workloads. Proc. of theVLDB Endowment (PVLDB), 2011,4(6):362-372.
    [15] Kimura H, Huo G, Rasin A, Madden S, Zdonik SB. CORADD: Correlation aware database designer for materialized views andindexes. Proc. of the VLDB Endowment (PVLDB), 2010,3(1):1103-1113.
    [16] Jimenez I, Sanchez H, Tran QT, Polyzotis N. Kaizen: A semi-automatic index advisor. In: Candan KS, Chen Y, Snodgrass RT,Gravano L, Fuxman A, eds. Proc. of the Special Interest Group on Management of Data (SIGMOD 2012). Scottsdale: ACM Press,2012. 685-688. [doi: 10.1145/2213836.2213932]
    [17] Schnaitter K, Polyzotis N. Semi-Automatic index tuning: Keeping DBAs in the loop. Proc. of the VLDB Endowment (PVLDB),2012,5(5):478-489.
    [18] Zhou LJ, Geng HJ, Xu MS. An improved algorithm for materialized view selection. Journal of Computers, 2011,6(1):130-138. [doi:10.4304/jcp.6.1.130-138]
    [19] Harinarayan V, Rajaraman A, Ullman JD. Implementing data cubes efficiently. In: Jagadish HV, Mumick IS, eds. Proc. of theSpecial Interest Group on Management of Data (SIGMOD’96). Montreal: ACM Press, 1996. 205-216. [doi: 10.1145/235968.233333]
    [20] Shukla A, Deshpande P, Naughton JF. Materialized view selection for multidimensional datasets. In: Gupta A, Shmueli O, WidomJ, eds. Proc. of the Very Large Data Bases (VLDB’98). New York: Morgan Kaufmann Publishers, 1998. 488-499.
    [21] Kumar TVV, Ghoshal A. A reduced lattice greedy algorithm for selecting materialized views. In: Prasad SK, Routray S, Khurana R,Sahni S, eds. Proc. of the Information Systems, Technology and Management (ICISTM 2009). Berlin, Heidelberg: Springer-Verlag,2009. 6-18. [doi: 10.1007/978-3-642-00405-6_5]
    [22] Kumar TVV, Haider M. A query answering greedy algorithm for selecting materialized views. In: Pan JS, Chen SM, Nguyen NT,eds. Proc. of the Int’l Conf. on Computational Collective Intelligence (ICCCI 2010). Berlin, Heidelberg: Springer-Verlag, 2010.153-162. [doi: 10.1007/978-3-642-16732-4_17]
    [23] Kumar TVV, Kumar S. Materialized view selection using genetic algorithm. In: Parashar M, Kaushik D, Rana OF, Samtaney R,Yang YY, Zomaya AY, eds. Proc. of the Int’l Conf. on Contemporary Computing (IC3 2012). Berlin, Heidelberg: Springer-Verlag,2012. 225-237. [doi: 10.1007/978-3-642-32129-0_26]
    [24] Derakhshan R, Stantic B, Korn O, Dehne FKHA. Parallel simulated annealing for materialized view selection in data warehousingenvironments. In: Bourgeois AG, Zheng SQ, eds. Proc. of the Int’l Conf. on Algorithms and Architectures for Parallel Processing(ICA3PP 2008). Berlin, Heidelberg: Springer-Verlag, 2008. 121-132. [doi: 10.1007/978-3-540-69501-1_14]
    [25] Tan HX, Zhou LX. Dynamic selection of materialized views of multi-dimensional data. Ruanjian Xuebao/Journal of Software,2002,13(6):1090-1096 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/20020608.htm
    [26] Zhang DZ, Huang ZY, Xue YS. NDSMMV—A new dynamic selection strategy of materialized views for multi-dimensional data.Journal of Computer Research and Development, 2008,45(5):901-908 (in Chinese with English abstract).
    [27] Shah B, Ramachandran V, Ramachandran K. A hybrid approach for data warehouse view selection. Int’l Journal of DataWarehousing and Mining, 2006,2(2):1-37. [doi: 10.4018/jdwm.2006040101]
    [28] Drias H. Generating materialized views using ant based approaches and information retrieval technologies. In: Proc. of theComputational Intelligence and Data Mining (CIDM 2011). Paris: IEEE Press, 2011. 276-282. [doi: 10.1109/CIDM.2011.5949302]
    [29] Yang J, Karlapalem K, Li Q. Algorithms for materialized view design in data warehousing environment. In: Jarke M, Carey MJ,Dittrich KR, Lochovsky FH, Loucopoulos P, Jeusfeld MA, eds. Proc. of the Very Large Data Bases (VLDB’97). Athens: MorganKaufmann Publishers, 1997. 136-145.
    [30] Gupta H. Selection of views to materialize in a data warehouse. In: Afrati FN, Kolaitis PG, eds. Proc. of the Int’l Conf. on DatabaseTheory (ICDT’97). Berlin, Heidelberg: Springer-Verlag, 1997. 98-112. [doi: 10.1007/3-540-62222-5_39]
    [31] Baru CK, Fecteau G, Goyal A, Hsiao H, Jhingran A, Padmanabhan S, Wilson WG. An overview of DB2 parallel edition. In: CareyMJ, Schneider DA, eds. Proc. of the Special Interest Group on Management of Data (SIGMOD’95). San Jose: ACM Press, 1995.460-462. [doi: 10.1145/223784.223876]
    [32] Mehta M, De Witt DJ. Data placement in shared-nothing parallel database systems. The Very Large Data Bases (VLDB) Journal,1997,6(1):53-72. [doi: 10.1007/s007780050033]
    [33] Agrawal R, Chaudhuri S, Das A, Narasayya VR. Automating layout of relational databases. In: Dayal U, Ramamritham K,Vijayaraman TM, eds. Proc. of the Int’l Conf. on Data Engineering (ICDE 2003). Bangalore: IEEE Press, 2003. 607-618. [doi: 10.1109/ICDE.2003.1260825]
    [34] Agrawal S, Narasayya VR, Yang B. Integrating vertical and horizontal partitioning into automated physical database design. In:Weikum G, K
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔跃生,张勇,曾春,冯建华,邢春晓.数据库物理结构优化技术.软件学报,2013,24(4):761-780

复制
分享
文章指标
  • 点击次数:8248
  • 下载次数: 11971
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2012-07-04
  • 最后修改日期:2012-09-12
  • 在线发布日期: 2013-03-26
文章二维码
您是第19894438位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号