State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210093, China;Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China;College of Computer and Information, Hohai University, Nanjing 210098, China 在期刊界中查找 在百度中查找 在本站中查找
State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210093, China;Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China 在期刊界中查找 在百度中查找 在本站中查找
State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210093, China;Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China 在期刊界中查找 在百度中查找 在本站中查找
State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210093, China;Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China 在期刊界中查找 在百度中查找 在本站中查找
Affiliation:
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献 [34]
|
相似文献
|
引证文献
|
资源附件
|
文章评论
摘要:
利用移动数据收集器(mobile data collector,简称MDC)进行传感器网络中感知数据的收集,可以有效地减少传感器将数据发送到静止基站的传输跳数,节约网络的能量,延长网络寿命.此外,MDC通过循环收集传感器数据或承担数据转发的功能,避免节点间由于多跳传输引起的能量空洞(energy hole)以及节点失效造成的传输链路中断等问题.MDC的移动性也为无线传感器网络的研究带来新的挑战.研究基于移动协助数据收集的无线传感器网络结构,分类总结了近年来提出的一些典型的基于MDC的算法和协议,着重讨论了MDC在网络能量、延迟、路由和传输等方面带来的性能变化.最后,进行了各种算法的比较性总结,针对传感器网络中MDC的研究提出了亟待解决的问题,并展望了其未来的发展方向.
Data gathering in wireless sensor networks by employing mobile data collectors (MDCs) can greatly reduce the relay hops when the sensors transmit data to static base station. This prolongs the lifetime of whole network for the energy saving at sensors. To avoid the energy holes incurred by multi-hop relaying among sensors, MDCs gather data from the sensors directly or some nodes buffered data of other sensors. Furthermore, MDCs relay data from sensors to the base station when there are no complete links between them due the fact that some sensors were invalid. However, new challenges have arose for the mobility of MDCs in data gathering, which is different from static wireless sensor networks. This paper focuses on the mobility-assisted data of gathering strategies in wireless sensor networks. Some current novel theories and algorithms for data gathering based on MDCs are reviewed, and the taxonomy is described. More specifically, several typical algorithms and protocols are discussed in detail. In the end, advantages and disadvantages of the algorithms are summarized. The open research issues in this field are also pointed out.
[1] Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks: A survey. Computer Networks, 2002,38(4):393-422. [doi: 10.1016/S1389-1286(01)00302-4]
[2] Lian J, Naik K, Agnew G. Data capacity improvement of wireless sensor networks using non-uniform sensor distribution. Int''lJournal of Distributed Sensor Networks, 2006,2(2):121-145. [doi: 10.1080/15501320500201276]
[3] Olariu S, Stojmenovic I. Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniformdistribution and uniform reporting. In: Proc. of the IEEE INFOCOM. New York: IEEE Press, 2006. 1-12. [doi: 10.1109/INFOCOM.2006.296]
[4] Wang W, Srinivasan V, Chua KC. Trade-Offs between mobility and density for coverage in wireless sensor networks. In: Proc. ofthe ACM MobiCom. New York: ACM Press, 2007. 39-50. [doi: 10.1145/1287853.1287860]
[5] Dyo V, Mascolo C. Efficient node discovery in mobile wireless sensor networks. In: Proc. of the IEEE DCOSS. New York: ACMPress, 2008. 478-485. [doi: 10.1007/978-3-540-69170-9_33]
[6] Francesco DM, Shah K, Kumar M, Anastasi G. An adaptive strategy for energy-efficient data collection in sparse wireless sensornetworks. In: Proc. of the EWSN. Springer-Verlag, 2010. 322-337. [doi: 10.1007/978-3-642-11917-0_21]
[7] Xing GL, Wang T, Jia WJ, Li M. Rendezvous design algorithms for wireless sensor networks with a mobile base station. In: Proc.of the ACM MobiHoc. New York: ACM Press, 2008. 231-240. [doi: 10.1145/1374618.1374650]
[8] Kansal A, Somasundara AA, Jea DD, Srivastava MB, Estrin D. Intelligent fluid infrastructure for embedded networks. In: Proc. ofthe ACM MobiSys. New York: ACM Press, 2004. 111-124. [doi: 10.1145/990064.990080]
[9] Shah RC, Roy S, Jain S, Brunette W. Data mules: Modeling a three-tier architecture for sparse sensor networks. In: Proc. of theACM SNPA. New York: IEEE Press, 2003. 30-41. [doi: 10.1109/SNPA.2003.1203354]
[10] Li ZJ, Li M, Wang JL, Cao ZC. Ubiquitous data collection for mobile users in wireless sensor networks. In: Proc. of the IEEEINFOCOM. New York: IEEE Press, 2011. 2246-2254. [doi: 10.1109/INFCOM.2011.5935040]
[11] Luo J, Zhang Q, Wang D. Delay tolerant event collection for underground coal mine using mobile sinks. In: Proc. of the IEEEIWQoS. New York: IEEE Press, 2009. 1-9. [doi: 10.1109/IWQoS.2009.5201405]
[12] Chebrolu K, Raman B, Mishra N, Valiveti PK, Kumar R. BriMon: A sensor network system for railway bridge monitoring. In: Proc.of the ACM MobiSys. New York: IEEE Press, 2008. 2-14. [doi: 10.1145/1378600.1378603]
[13] Akyildiz IF, Pompili D, Melodia T. Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 2005,3(3):257-279. [doi: 10.1016/j.adhoc.2005.01.004]
[14] Dantu K, Rahimi M, Shah H, Babel S, Dhariwal A, Sukhatme GS. Robomote: Enabling mobility in sensor networks. In: Proc. ofthe IEEE IPSN. New York: ACM/IEEE Press, 2005. 404-409. [doi: 10.1109/IPSN.2005.1440957]
[15] Lymberopoulos D, Savvides A. Xyz: A motion-enabled, power aware sensor node platform for distributed sensor networkapplications. In: Proc. of the IEEE IPSN. New York: ACM/IEEE Press, 2005. 449-454. [doi: 10.1109/IPSN.2005.1440970]
[16] Intanagonwiwat C, Govindan R, Estrin D, Heidemann J, Silva F. Directed diffusion for wireless sensor networking. IEEE/ACMTrans. on Networking, 2003,11(1):2-14. [doi: 10.1109/TNET.2002.808417]
[17] Pon R, Batalin MA, Gordon J, Kansal A, Liu D, Rahimi M, Shirachi L, Yu Y, Hansen M, Kaiser WJ, Srivastava M, Sukhatme G,Estrin D. Networked infomechanical systems: A mobile embedded networked sensor platform. In: Proc. of the IEEE IPSN. NewYork: ACM/IEEE Press, 2005. 376-381. [doi: 10.1109/IPSN.2005.1440952]
[18] Zhang XW, Chen GH. Energy-Efficient platform designed for SDMA applications in mobile wireless sensor networks. In: Proc. ofthe IEEE WCNC. New York: IEEE Press, 2011. 2089-2094. [doi: 10.1109/WCNC.2011.5779476]
[19] Ma M, Yang YY. SenCar: An energy-efficient data gathering mechanism for large scale multihop sensor networks. IEEE Trans. onParallel and Distributed Systems, 2007,18(10):1476-1488. [doi: 10.1109/TPDS.2007.1070]
[20] Ammari H, Das S. Data dissemination to mobile sinks in wireless sensor networks: An information theoretic approach. In: Proc. ofthe IEEE MASS. New York: IEEE Press, 2005. 305-314. [doi: 10.1109/MAHSS.2005.1542814]
[21] Zhang XW, Zhang LL. Optimizing energy-latency trade-off in wireless sensor networks with mobile element. In: Proc. of the IEEEICPADS. New York: IEEE Press, 2010. 534-541. [doi: 10.1109/ICPADS.2010.123]
[22] Ryo S, Rajesh KG. Optimizing energy-latency trade-off in sensor networks with controlled mobility. In: Proc. of the IEEEINFOCOM. New York: IEEE Press, 2009. 2566-2570. [doi: 10.1109/INFCOM.2009.5062188]
[23] Nesamony S, Vairamuthu MK, Orlowska ME. On optimal route of a calibrating mobile sink in a wireless sensor network. In: Proc.of the IEEE INSS. New York: IEEE Press, 2007. 61-64. [doi: 10.1109/INSS.2007.4297389]
[24] Gu Y, Bozdag D, Ekici E. Mobile element based differentiated message delivery inwireless sensor networks. In: Proc. of the IEEEWoWMoM. New York: IEEE Press, 2006. 83-92. [doi: 10.1109/WOWMOM.2006.73]
[25] Gao S, Zhang H, Das SK. Efficient data collection in wireless sensor networks with path-constrained mobile sinks. MobileComputing, 2011,10(4):592-608. [doi: 10.1109/WOWMOM.2009.5282492]
[26] Shi GT, Liao MH. Movement-Assisted data gathering scheme with load balancing for sensor networks. Ruanjian Xuebao/Journalof Software, 2007,18(9):2235-2244 (in Chinese with English abstract). http://www.jos.org.cn/1010-9825/18/2235.htm [doi: 10.1360/jos182235]
[27] Luo J, Hubaux JP. Joint sink mobility and routing to maximize the lifetime of wireless sensor networks: The case of constrainedmobility. IEEE/ACM Trans. on Networking, 2010,18(3):871-884. [doi: 10.1109/TNET.2009.2033472]
[28] Xing G, Wang T, Xie Z, Jia W. Rendezvous planning in wireless sensor networks with mobile elements. IEEE Trans. on MobileComputing, 2008,7(12):1430-1443. [doi: 10.1109/TMC.2008.58]
[29] Basagni S, Carosi A, Melachrinoudis E, Petrioli C, Wang ZM. Controlled sink mobility for prolonging wireless sensor networkslifetime. Wireless Networks, 2008,14(6):831-858. [doi: 10.1007/s11276-007-0017-x]
[30] Vlajic N, Stevanovic D, Spanogiannopoulos G. Strategies for improving performance of IEEE 802.15.4/ZigBee WSNs with pathconstrainedmobile sink(s). Computer Communications, 2011,34(6):743-757. [doi: 10.1016/j.comcom.2010.09.012]
[31] Gao S, Zhang HK, Xu HS. Efficient data gathering approach in sensor networks with path-fixed sinks. Ruanjian Xuebao/Journal ofSoftware, 2010,21(1):147-162 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3688.htm [doi: 10.3724/SP.J.1001.2010.03688]
[32] Gao S, Zhang HK. Optimal path selection for mobile sink in delay-guaranteed sensor networks. Journal of Electronics, 2011,39(4):742-747 (in Chinese with English abstract).
[33] He L, Pan JP, Xu JD. A progressive approach to reducing data collection latency in wireless sensor networks with mobile elements.IEEE Trans. on Mobile Computing, 2012. http://doi.ieeecomputersociety.org/10.1109/TMC.2012.105
[34] Vincze Z, Vass D, Vida R, Vidacs A, Telcs A. Adaptive sink mobility in event-driven densely deployed wireless sensor networks.Ad Hoc