In order to prevent the disclosure of sensitive information and protect users’ privacy, the generalization and suppression of technology is often used to anonymize the quasi-identifiers of the data before its sharing. Data streams are inherently infinite and highly dynamic which are very different from static datasets, so that the anonymization of data streams needs to be capable of solving more complicated problems. The methods for anonymizing static datasets cannot be applied to data streams directly. In this paper, an anonymization approach for data streams is proposed with the analysis of the published anonymization methods for data streams. This approach scans the data only once to recognize and reuse the clusters that satisfy the anonymization requirements for speeding up the anonymization process. Experimental results on the real dataset show that the proposed method can reduce the information loss that is caused by generalization and suppression and also satisfies the anonymization requirements and has low time and space complexity.
[1] Wong RCW, Fu AWC, Wang K, Pei J. Anonymization-Based attacks in privacy-preserving data publishing. ACM Trans. onDatabase Systems, 2009,34(2):1-46. [doi: 10.1145%2f1538909.1538910]
[2] LeFevre K, DeWitt DJ, Ramarkrishnan R. Incognito: Efficient full-domain k-anonymity. In: Proc. of the SIGMOD 2005. ACMPress, 2005. 49-60. [doi: 10.1145/1066157.1066164]
[3] Fung BCM, Yu PS. Top-Down specialization for information and privacy preservation. In: Proc. of the ICDE 2005. IEEEComputer Society, 2005. 205-216. [doi: 10.1109/ICDE.2005.143]
[4] Bayardo RJ, Agrawal R. Data privacy through optimal k-anonymization. In: Proc. of the ICDE 2005. IEEE Computer Society, 2005.217-228. [doi: 10.1109/ICDE.2005.42]
[5] LeFevre K, DeWitt DJ, Ramakrishnan R. Mondrian multidimensional k-anonymity. In: Proc. of the ICDE 2006. IEEE ComputerSociety, 2006. 25-25. [doi: 10.1109/ICDE.2006.101]
[6] Fung BCM, Wang K, Wang L, Hung PCK. Privacy-Preserving data publishing for cluster analysis. Data & Knowledge Engineering,2009,68(6):552-575. [doi: 10.1016/j.datak.2008.12.001]
[7] Wang ZH, Xu J, Wang W, Shi BL. Clustering-Based approach for data anonymization. Ruan Jian Xue Bao/Journal of Software,2010,21(4):680-693 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3508.htm [doi: 10.3724/SP.J.1001.2010.03508]
[8] Sweeney L. k-Anonymity: A model for protecting privacy. Int’l Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,2002,10(5):557-570. [doi: 10.1142/S0218488502001648]
[9] Machanavajjhala A, Kifer D, Gehrke J, Venkitasubramaniam M. l-Diversity: Privacy beyond k-anonymity. ACM Trans. onKnowledge Discovery from Data, 2007,1(1):1-52. [doi: 10.1145/1217299.1217300]
[10] Yang N, Tang CJ, Wang Y, Chen Y, Zheng JL. Clustering algorithm on data stream with skew distribution based on temporaldensity. Ruan Jian Xue Bao/Journal of Software, 2010,21(5):1031-1041 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3470.htm [doi: 10.3724/SP.J.1001.2010.03470]
[11] Li FF, Sun JM, Papadimitriou S, Mihaila GA, Stanoi I. Hiding in the crowd: Privacy preservation on evolving streams throughcorrelation tracking. In: Proc. of the ICDE 2007. IEEE Computer Society, 2007. 686-695. [doi: 10.1109/ICDE.2007. 367914]
[12] Cao JM, Carminati B, Ferrari E, Tan K. CASTLE: Continuously anonymizing data streams. IEEE Trans. on Dependable andSecure Computing, 2011,8(3):337-352. [doi: 10.1109/TDSC.2009.47]
[13] Zhou B, Han Y, Pei J, Jiang B, Tao YF, Jia Y. Continuous privacy preserving publishing of data stream. In: Proc. of the EDBT2009. New York: ACM Press, 2009. 648-659. [doi: 10.1145/1516360.1516435]
[14] Li J Z, Ooi BC, Wang WP. Anonymizing streaming data for privacy protection. In: Proc. of the ICDE 2008. IEEE ComputerSociety, 2008. 1367-1369. [doi: 10.1109/ICDE.2008.4497558]
[15] Wang WP, Li, JZ, Ai CY, Li YS. Privacy protection on sliding window of data streams. In: Proc. of the 2007 Int’l Conf. onCollaborative Computing: Networking, Applications and Worksharing. New York: IEEE Computer Society, 2007. 213-221. [doi:10.1109/COLCOM.2007.4553832]
[16] Zhang JW, Yang J, Zhang JP, Yuan YB. KIDS: k-Anonymization data stream base on sliding window. In: Proc. of 2010 the 2ndInt’l Conf. on Future Computer and Communication. IEEE Computer Society, 2010. V2-311-V2-316. [doi: 10.1109/ICFCC.2010.5497420]
[17] Wang P, Lu JJ, Zhao L, Yang JW. B-CASTLE: An efficient publishing algorithm for k-anonymizing data streams. In: Proc. of2010 the 2nd WRI Global Congress on Intelligent Systems. IEEE Computer Society, 2010. 132-136. [doi: 10.1109/GCIS.2010.196]
[18] Zakerzadeh H, Osborn SL. FAANST: Fast anonymizing algorithm for numerical streaming data. In: Proc. of the 5th Int’lWorkshop on Data Privacy Management and 3rd Int’l Conf. on Autonomous Spontaneous Security. Springer-Verlag, 2011. 36-50.[doi: 10.1007/978-3-642-19348-4_4]
[19] Meyerson A, Williams R. On the complexity of optimal k-anonymity. In: Proc. of the 23rd ACM SIGMOD-SIGACT-SIGARTSymp. on Principles of Database Systems. ACM Press, 2004. 223-228. [doi: 10.1145/1055558.1055591]
[20] Atzori M. Weak k-anonymity: A low-distortion model for protecting privacy. In: Proc. of the Information Security Conf. 2006.Springer-Verlag, 2006. 60-71. [doi: 10.1007/11836810_5]
[21] Iyengar VS. Transforming data to satisfy privacy constraints. In: Proc. of the ACM KDD 2002. New York: ACM Press, 2002.279-288. [doi: 10.1145/775047.775089]
[22] Frank A, Asuncion A. UCI machine learning repository. Irvine: School of Information and Computer Science, University ofCalifornia, 2010. http://archive.ics.uci.edu/ml