复杂网络特性对大规模多智能体协同控制的影响
作者:
基金项目:

国家自然科学基金(60905042); 国家科技支撑计划(2012BAI22B05); 航空科学基金(20100580005); 中央高校基本科研业务费专项资金(ZYGX2011X013); 吉林大学开放课题(93K172012K10)


Effects of Complex Network Characters on the Coordination Control of Large-Scale Multi- Agent System
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着分布式多智能体系统应用领域和系统规模的不断扩大,网络特性已成为影响系统性能的一个重要因素.通过研究和分析复杂网络特性对大规模分布式多智能体系统协同控制的影响,对多智能体系统性能的影响做出系统性分析,同时为提出大规模多智能体组织结构的优化算法提供依据.主要针对随机网络、小世界网络、网格网络和无尺度网络这4 种典型复杂网络特性,从理论和仿真两方面进行分析.在理论方面,通过基于马尔可夫链的信息传输过程在不同网络结构下的建模,对比分析了信息无偏随机游走模型和智能决策模型下的传输效率.在仿真建模中,主要从智能体间信息传输效率、不同应用领域中集成协同控制效率、对网络故障恢复的影响这3 个典型的多智能体系统协同控制应用对比分析复杂网络特性对系统性能的影响.研究结果表明,复杂网络特性如小世界和无尺度特性可以在相同的控制策略下形成明显的性能差异,如果设计合理的控制算法,复杂网络结构将有助于多智能体系统性能的提升.

    Abstract:

    With the expansion of distributed multi-agent system applications and the increasing scale of the system, the characters of complex network have become an important factor in system performance. This paper makes an initial effort to find the effects of complex network characters on large-scale distributed multi-agent coordination to create a systemic analysis of the system performance and provide organization optimization algorithm designs. The study primarily investigated typical complex networks: random network, small-world network, grid network and scale-free network in multi-agent coordination on theoretical analysis and practical simulations. In theoretical analysis, the study has built the cooperative information transmission model based on Markov chain over different network topologies and compared their efficiencies on either random walk or intelligent routing model. In addition, the study explored the characters of complex network in three main coordination simulations: cooperative information transmission, multi-agent team coordination, and multi-agent network recovery. It is found that the characters of complex network such as small-world or scale-free attributes will bring significant differences in spite of the same coordination schema, and it is feasible to design some desired intelligent algorithms to take the advantage of those effects so that system performance can be promoted.

    参考文献
    [1] Pell B, Bernard DE, Chien SA, Gat E, Muscettola N, Nayak PP, Wagner MD, Williams BC. An autonomous spacecraft agentprototype. In: Proc. of the 1st Int’l Conf. on Autonomous Agents. New York: ACM Press, 1997. 253-261. [doi: 10.1023/A:1008860925034]
    [2] Geng T, Hu JW, Zhang ZL, Shan XJ. War system modeling based on complex net and agent. Ship Electronic Engineering, 2010,30(9):19-35 (in Chinese with English abstract).
    [3] Domnori E, Cabri G, Leonardi L. Multi-Agent approach for disaster management. In: Proc. of the Int’l Conf. on P2P, Parallel, Grid,Cloud and Internet Computing. 2011. 311-316. [doi: 10.1109/3PGCIC.2011.57]
    [4] Chen Y, Wu W. Cooperative electronic attack for groups of unmanned air vehicles based on multi-agent simulation and evaluation.IJCSI Int’l Journal of Computer Science Issues, 2012,9(2):1-6.
    [5] Kitano H, Tadokoro S, Noda I, Matsubara H, Takahashi T, Shinjou A, Shimada S. Robocup rescue: Search and rescue inlarge-scale disasters as a domain for autonomous agents research. In: Proc. of the IEEE Int’l Conf. on Systems, Man andCybernetics, Vol.VI. 1999. 739-743. [doi: 10.1109/ICSMC.1999.816643]
    [6] Watts D, Strogatz S. Collective dynamics of small world networks. Nature, 1998,393:440-442. [doi: 10.1038/30918]
    [7] Axtell R. Effects of interaction topology and activation regime in several multi-agent systems. In: Proc. of the Multi-Agent BasedSimulation. LNCS 1979, Springer-Verlag, 2000. 33-48. [doi: 10.1007/3-540-44561-7_3]
    [8] Gaston E, DesJardins M. Social network structures and their impact on multi-agent system dynamics. In: Proc. of the Associationfor the Advancement of Artificial Intelligence. 2005. 32-37.
    [9] Glinton R, Sycara K, Scerri P. Agent organized networks redux. In: Proc. of the 23th Association for the Advancement of ArtificialIntelligence. 2008. 83-88.
    [10] Ren W, Xu Y, Luo JM, Guo LY. Influence of social networks on recovering large scale distributed systems. In: Proc. of the 12thInt’l Conf. on Principles of Practice in Multi-Agent Systems. 2009. 579-586. [doi: 10.1007/978-3-642-11161-7_44]
    [11] Delgado J. Emergence of social conventions in complex networks. Artificial Intelligence, 2002,141(1):171-185. [doi: 10.1016/S0004-3702(02)00262-X]
    [12] Li X, Yang HY. Complex network characteristics and consensus of multi-agent systems. Complex Systems and ComplexityScience, 2011,8(3):38-43 (in Chinese with English abstract).
    [13] Gaston M, DesJardins M. Agent-Organized networks for dynamic team formation. In: Proc. of the 2005 Int’l Conf. on AutonomousAgents and Multi-Agent Systems. New York, 2005. 230-237. [doi: 10.1145/1082473.1082508]
    [14] Yu B, Venkatraman M, Singh P. An adaptive social network for information access: Architecture and experimental results. AppliedArtificial Intelligence, 2003,17(1):21-38. [doi: 10.1080/713827056]
    [15] Sharma V, Hellstrand F. Framework for Multi-Protocol Label Switching (MPLS)-Based Recovery. RFC 3469, 2003.
    [16] Xu Y, Scerri P, Yu B, Okamoto S, Lewis M, Sycara K. An integrated token-based algorithm for scalable coordination. In: Proc. ofthe 2005 Int’l Conf. on Autonomous Agents and Multi-Agent Systems. 2005. 407-414. [doi: 10.1145/1082473.1082536]
    [17] Lovasz L. Random walks on graphs: A survey. In: Proc. of the Combinatorics. Bolyai Mathematical Society, 1993.
    [18] Xu Y, Lewis M, Sycara K, Scerri P. An efficient information sharing approach for large scale multi-agent team. In: Proc. of the11th Int’l Conf. on Information Fusion. IEEE, 2008.
    [19] Xu Y, Li X, Tang RC, Liu M. Simulation platform for large-scale multi-agent team coordination. Journal of University of Scienceand Technology of China, 2012,42(8):617-622 (in Chinese with English abstract).
    [20] Tambe M. Towards flexible teamwork. Journal of Artificial Intelligence Research, 1997,7:83-124.
    [21] Mahdi K, Farahat H, Safar M. Temporal evolution of social networks in paltalk. In: Proc. of the 10th Int’l Conf. on InformationIntegration and Web-Based Applications and Services. 2008. 98-103. [doi: 10.1145/1497308.1497330]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐杨,李响,常宏,王月星.复杂网络特性对大规模多智能体协同控制的影响.软件学报,2012,23(11):2971-2986

复制
分享
文章指标
  • 点击次数:6355
  • 下载次数: 10015
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2012-06-07
  • 最后修改日期:2012-08-21
  • 在线发布日期: 2012-10-31
文章二维码
您是第19727817位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号